首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3819篇
  免费   98篇
  国内免费   45篇
化学   2622篇
晶体学   21篇
力学   86篇
数学   438篇
物理学   795篇
  2022年   26篇
  2021年   58篇
  2020年   55篇
  2019年   35篇
  2018年   37篇
  2017年   30篇
  2016年   67篇
  2015年   53篇
  2014年   71篇
  2013年   158篇
  2012年   173篇
  2011年   239篇
  2010年   126篇
  2009年   88篇
  2008年   204篇
  2007年   210篇
  2006年   199篇
  2005年   196篇
  2004年   170篇
  2003年   148篇
  2002年   155篇
  2001年   92篇
  2000年   83篇
  1999年   65篇
  1998年   49篇
  1997年   59篇
  1996年   67篇
  1995年   41篇
  1994年   52篇
  1993年   54篇
  1992年   53篇
  1991年   31篇
  1990年   43篇
  1989年   44篇
  1988年   26篇
  1987年   25篇
  1986年   25篇
  1985年   55篇
  1984年   39篇
  1983年   25篇
  1982年   41篇
  1981年   33篇
  1980年   44篇
  1979年   37篇
  1978年   48篇
  1977年   38篇
  1976年   35篇
  1975年   33篇
  1974年   19篇
  1973年   40篇
排序方式: 共有3962条查询结果,搜索用时 953 毫秒
1.
2.
We have developed a new tool for numerical work in General Relativity: GRworkbench. We discuss how GRworkbench's implementation of a numerically-amenable analogue to Differential Geometry facilitates the development of robust and chart-independent numerical algorithms. We consider, as an example, geodesic tracing on two charts covering the exterior Schwarzschild space-time.  相似文献   
3.
In 1779 Euler proved that for every even n there exists a latin square of order n that has no orthogonal mate, and in 1944 Mann proved that for every n of the form 4k + 1, k ≥ 1, there exists a latin square of order n that has no orthogonal mate. Except for the two smallest cases, n = 3 and n = 7, it is not known whether a latin square of order n = 4k + 3 with no orthogonal mate exists or not. We complete the determination of all n for which there exists a mate-less latin square of order n by proving that, with the exception of n = 3, for all n = 4k + 3 there exists a latin square of order n with no orthogonal mate. We will also show how the methods used in this paper can be applied more generally by deriving several earlier non-orthogonality results.  相似文献   
4.
5.
6.
7.
We consider the problem of restructuring an ordered binary tree T, preserving the in-order sequence of its nodes, so as to reduce its height to some target value h. Such a restructuring necessarily involves the downward displacement of some of the nodes of T. Our results, focusing both on the maximum displacement over all nodes and on the maximum displacement over leaves only, provide (i) an explicit tradeoff between the worst-case displacement and the height restriction (including a family of trees that exhibit the worst-case displacements) and (ii) efficient algorithms to achieve height-restricted restructuring while minimizing the maximum node displacement.  相似文献   
8.
For all ‘reasonable’ finite t, k, and s, we construct a t‐(?0, k, 1) design and a group of automorphisms which is transitive on blocks and has s orbits on points. In particular, there is a 2‐(?0, 4, 1) design with a block‐transitive group of automorphisms having two point orbits. This answers a question of P. J. Cameron and C. E. Praeger. The construction is presented in a purely combinatorial way, but is a by‐product of a new way of looking at a model‐theoretic construction of E. Hrushovski. © 2004 Wiley Periodicals, Inc.  相似文献   
9.
A generally covariant wave equation is derived geometrically for grand unified field theory. The equation states most generally that the covariant d'Alembertian acting on the vielbein vanishes for the four fields which are thought to exist in nature: gravitation, electromagnetism, weak field and strong field. The various known field equations are derived from the wave equation when the vielbein is the eigenfunction. When the wave equation is applied to gravitation the wave equation is the eigenequation of wave mechanics corresponding to Einstein's field equation in classical mechanics, the vielbein eigenfunction playing the role of the quantized gravitational field. The three Newton laws, Newton's law of universal gravitation, and the Poisson equation are recovered in the classical and nonrelativistic, weak-field limits of the quantized gravitational field. The single particle wave-equation and Klein-Gordon equations are recovered in the relativistic, weak-field limit of the wave equation when scalar components are considered of the vielbein eigenfunction of the quantized gravitational field. The Schrödinger equation is recovered in the non-relativistec, weak-field limit of the Klein-Gordon equation). The Dirac equation is recovered in this weak-field limit of the quantized gravitational field (the nonrelativistic limit of the relativistic, quantezed gravitational field when the vielbein plays the role of the spinor. The wave and field equations of O(3) electrodynamics are recovered when the vielbein becomes the relativistic dreibein (triad) eigenfunction whose three orthonormal space indices become identified with the three complex circular indices (1), (2), (3), and whose four spacetime indices are the indices of non-Euclidean spacetime (the base manifold). This dreibein is the potential dreibein of the O(3) electromagnetic field (an electromagnetic potential four-vector for each index (1), (2), (3)). The wave equation of the parity violating weak field is recovered when the orthonormal space indices of the relativistic dreibein eigenfunction are identified with the indices of the three massive weak field bosons. The wave equation of the strong field is recovered when the orthonormal space indices of the relativistic vielbein eigenfunction become the eight indices defined by the group generators of the SU (3) group.  相似文献   
10.
The purpose of this article is to contribute to the dialogue about the notion of advanced mathematical thinking by offering an alternative characterization for this idea, namely advancing mathematical activity. We use the term advancing (versus advanced) because we emphasize the progression and evolution of students' reasoning in relation to their previous activity. We also use the term activity, rather than thinking. This shift in language reflects our characterization of progression in mathematical thinking as acts of participation in a variety of different socially or culturally situated mathematical practices. For these practices, we emphasize the changing nature of students' mathematical activity and frame the process of progression in terms of multiple layers of horizontal and vertical mathematizing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号