首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   1篇
化学   28篇
力学   1篇
物理学   14篇
  2022年   4篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  1992年   1篇
  1990年   2篇
  1980年   3篇
排序方式: 共有43条查询结果,搜索用时 31 毫秒
1.
To avoid radiation exposure in the use of nano zirconia in the ceramics and dentistry industries, a Technologically Enhanced Natural Radioactive Materials (TENORM)-free nano zirconia was required. The purpose of this research was to obtain an environmentally friendly TENORM-free nano zirconia prototype. TENORM-free nano zirconia synthesis consists of processing zircon sand into sodium zirconate, leaching of sodium zirconate to form zirconyl chloride solution, separation of impurities (silica, ThO2, U3O8, etc.), crystallization of zirconyl chloride, zirconyl-oxalate sol-gel formation, and calcination. The quality test of nano zirconia products was characterized by XRD, FT-IR, SEM, and Surveymeter, while the composition test was carried out by the XRF method. The results of this research obtained an environmentally friendly TENORM-free nano zirconia prototype, that has the chemical compound of ZrO2, the crystal size was 15.09 nm, the average particle size was 91.33 nm, free of radiation exposure, and its composition includes ZrO2: 96.599%, HfO2: 2.899%, and CaO: 0.303%. This synthesis can process zircon sand containing TENORM (ThO2: 0.070% and U3O8: 0.047%) into TENORM-free nano zirconia and increase the added value by increasing the zirconia content from 40.493% to 96.599%.  相似文献   
2.
A biosensor was prepared with natural melanin nanoparticles (MNP) decorated on a screen‐printed carbon electrode (SPCE). Hexavalent chromium was selected as a well‐known heavy metal ion to be detected for testing the performance of novel biosensor. Natural MNP was extracted from cuttlefish (Sepia officinalis) ink. Surface decoration of SPCEs with MNP was performed by two different methods. The first one was layer‐by‐layer assembly (LBL‐A) for different cycle times(n). In the second one, plasma treatment of SPCE incorporated with evaporation‐induced self‐assembly (EI‐SA) techniques including different incubation times in MNP solutions. The performance of both modified SPCEs were tested for amperometric detection of Cr(VI) in various water samples, and peak reduction of Cr(VI) was determined at 0.33 V. Amperometric results showed wide linear ranges of 0.1–2 μM and 0.1–5 μM of Cr(VI) for SPCEs modified with 14n‐LBL‐A and 12h‐EI‐SA, respectively. The sensitivities of SPCEs modified with 14n‐LBL‐A and 12h‐EI‐SA techniques were 0.27 μA μM?1 and 0.52 μA μM?1, respectively. In addition, both modified SPCEs selectively detected Cr(VI) in a model aqueous system composed of certain other heavy metals and minerals, and tap and lake water samples. The LOD and LOQ values for 12h‐EI‐SA were 0.03 μM and 0.1 μM, respectively. This showed that MNP‐modified‐SPCEs generated via EI‐SA techniques have the potential to be an alternative to conventional detection methods such as ICP‐MS.  相似文献   
3.
Abstract

Wound healing is a complex process and it involves restoration of damaged skin tissues. Several wound dressings comprising naturally made substances are constantly investigated to assist wound healing. In this research, a new wound dressing based on polyurethane (PU) supplemented with essence of Channa striatus (CS) fish oil was made by electrospinning. Morphological study depicted the reduction in fiber diameter than PU with the addition of fish oil (0.552?±?0.109?μm for 8:1 v/v% and 0.519?±?0.196?μm 7:2 v/v%) than the pristine PU (0.971?±?0.205?µm). Fourier transform infrared spectroscopy (FTIR) analysis revealed the presence of fish oil in the composite as identified through increasing peak intensity. Fish oil resulted in the hydrophilic behavior (88?±?3 (8:1 v/v) and 70?±?6 (7:2 v/v)) as revealed in the contact angle analysis. Thermal gravimetric analysis (TGA) showed the superior thermal behavior of the wound dressing patch compared to the PU. Atomic force microscopy (AFM) analysis insinuated a decrease in the surface roughness of the pristine polyurethane with the added fish oil. Coagulation assays signified the delay in the blood clotting time portraying its anti-thrombogenic behavior. Hemolytic assay revealed the less toxic nature of the developed nanocomposites with the red blood cells (RBC’s) depicting its safety with blood. Hence, polyurethane nanofibers supplemented with fish oil made them as deserving candidates for wound dressing application.  相似文献   
4.
Herein we present a new approach for the complete removal of CrVI species, through reduction of CrVI to CrIII, followed by adsorption of CrIII. Reduction of chromium from water is an important challenge, as CrIV is one of the most toxic substances emitted from industrial processes. Chitosan (CS) thin films were developed on plain polysulfone (PSf) and PSf/TiO2 membrane substrates by a temperature-induced technique using polyvinyl alcohol as a binder. Structure property elucidation was carried out by X-ray diffraction, microscopy, spectroscopy, contact angle measurement, and water uptake studies. The increase in hydrophilicity followed the order: PSf < PSf/TiO2 < PSf/TiO2/CS membranes. Use of this thin-film composite membrane for chromium removal was investigated with regards to the effects of light and pH. The observations reveal 100 % reduction of CrVI to CrIII through electrons and protons donated from OH and NH2 groups of the CS layer; the reduced CrIII species are adsorbed onto the CS layer via complexation to give chromium-free water.  相似文献   
5.
This work presents the synthesis and characterization of a novel compound, 4-(thiophene-3-ylmethoxy)phthalonitrile (TMP). The spectroscopic properties of the compound were examined by FT-IR, FT-Raman, NMR, and UV techniques. FT-IR and FT-Raman spectra in solid state were observed in the region 4000–400 cm−1 and 3500–50 cm−1, respectively. The 1H and 13C NMR spectra were recorded in CDCl3 solution. The UV absorption spectrum of the compound that dissolved in THF was recorded in the range of 200–800 nm. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts (13C NMR and 1H NMR) were calculated using the gauge-invariant atomic orbital (GIAO) method. A study on the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The HOMO and LUMO analyses have been used to elucidate information regarding charge transfer within the molecule. Comparison of the calculated frequencies, NMR chemical shifts, absorption wavelengths with the experimental values revealed that DFT method produces good results.  相似文献   
6.
Recent studies in the agronomic field indicate that the exogenous application of polyphenols can provide tolerance against various stresses in plants. However, the molecular processes underlying stress mitigation remain unclear, and little is known about the impact of exogenously applied phenolics, especially in combination with salinity. In this work, the impacts of exogenously applied chlorogenic acid (CA), hesperidin (HES), and their combination (HES + CA) have been investigated in lettuce (Lactuca sativa L.) through untargeted metabolomics to evaluate mitigation effects against salinity. Growth parameters, physiological measurements, leaf relative water content, and osmotic potential as well as gas exchange parameters were also measured. As expected, salinity produced a significant decline in the physiological and biochemical parameters of lettuce. However, the treatments with exogenous phenolics, particularly HES and HES + CA, allowed lettuce to cope with salt stress condition. Interestingly, the treatments triggered a broad metabolic reprogramming that involved secondary metabolism and small molecules such as electron carriers, enzyme cofactors, and vitamins. Under salinity conditions, CA and HES + CA distinctively elicited secondary metabolism, nitrogen-containing compounds, osmoprotectants, and polyamines.  相似文献   
7.
The effect of surface melting on the dual solutions that can arise in the problem of the mixed convection boundary-layer flow past a vertical surface embedded in a non-Darcian porous medium is considered. The problem is described by M, melting parameter, \(\lambda \), mixed convection parameter, and \(\gamma \), the flow inertia coefficient, numerical results being obtained in terms of these three parameters. It is seen that the melting phenomenon reduces the heat transfer rate and enhances the boundary-layer separation at the solid–liquid interface. Asymptotic solutions for the forced convection, \(\lambda =0\), and free convection, large \(\lambda \), limits are derived.  相似文献   
8.
Ethylene propylene diene monomer grafted with maleic ahydride (MAH-g-EPDM) was prepared by peroxide-initiated melt grafting of MAH onto EPDM using a HAAKE internal mixer at 180 °C and 60 rpm for 5 min. The effect of MAH-g-EPDM compatibilizer on the interactions, and tensile and morphological properties of halloysite nanotubes (HNTs) filled EPDM nanocomposites was investigated. The tensile properties of the nanocomposites were influenced by two major factors. The hydrogen bonding between MAH-g-EPDM and HNTs, which was confirmed by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), as well as the formation of EPDM-rich and HNT-rich areas, are the dominant effects on the tensile strength of the nanocomposites at low and high HNT loading, respectively. It was found that the cure time (t90), maximum torque (MH) and minimum torque (ML) of the compatibilized nanocomposites were increased after adding MAH-g-EPDM. The reinforcement mechanism of the compatibilized and un-compatibilized EPDM/HNT nanocomposites was also investigated based on morphological observations of the nanocomposites.  相似文献   
9.
A comprehensive study on the small-signal intensity modulation (IM) characteristics of a fiber grating Fabry-Perot (FGFP) laser is numerically investigated. The effect of external optical feedback (OFB), temperature, injection current, cavity volume, nonlinear gain compression factor, and fiber grating (FG) parameters on IM characteristics are presented. The temperature dependence (TD) of IM is calculated according to the TD of laser cavity parameters instead of using the well-known Parkove relationship. It has been shown that the optimum external fiber length (L ext) is 3.1 cm. The optimum range of working temperature for FGFP laser is between 23 to 27 °C. We also show that by increasing the laser injection current from 10 to 60 mA, the IM peak amplitude decreased from 6.3 to 0.2 dB and the relaxation-oscillation frequency (ROF) is shifted from 1.2 GHz towards higher frequency of 5.48 GHz. In addition, the AR coating reflectivity and gain compression factor have no significant effect on the IM. The study indicates that a stable operation and excellent modulation characteristic can be obtained after optimization process.  相似文献   
10.
Performance optimization of 3 × 10 Gbps conventional electrical-duty-cycle division multiplexing (C-E-DCDM) technique is investigated. It is shown that controlling signal level spacing can optimize its performance. Two level spacing optimization techniques, one in electrical domain and another in optical domain are examined. In general, performance of the C-E-DCDM is improved significantly using both approaches. The results show by optimization, an improvement of around 5.5 dB can be achieved for the C-E-DCDM in terms of receiver sensitivity and optical signal-to-noise ratio using both electrical and optical methods. However, chromatic dispersion tolerance in one of the optimization approaches is degraded by around 34 ps/nm for negative dispersion, while the positive dispersion tolerance improved compared to the C-E-DCDM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号