首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2021年   1篇
  2016年   1篇
  2014年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
2.

A new class of energetic biopolymers, which contain nitrate ester (O-NO2) and nitramine (N-NO2) as explosophoric groups, was successfully synthesized by surface modification of renewable pristine cellulose (PC) and microcrystalline cellulose (MCC) via epichlorohydrin-mediated amination followed by nitration process to produce new promising energetic aminated and nitrated cellulose and microcrystalline cellulose (APCN and AMCCN). Their structural, thermal, crystallinity and morphological features were examined and compared to those of the common cellulose nitrate. Furthermore, their energetic performances were evaluated by EXPLO5 V6.04 software. Experimental results confirm the successful chemical functionalization process to develop insensitive APCN and AMCCN with outstanding features such as nitrogen content of 15.01% and 15.39%, density of 1.692 g/cm3 and 1.708 g/cm3, and detonation velocity of 7526 m/s and 7752 m/s, respectively, which are significantly higher than those of the nitrated unmodified cellulosic biopolymers. The present investigation provides a suitable pathway to design new insensitive and energy-rich dense cellulosic biopolymers for potential application in high-performance solid propellants and composite explosives.

  相似文献   
3.
The influence of porous ammonium perchlorate (POAP) on the thermomechanical and combustion behavior of solid rocket propellants based on polyvinylchloride binder has been investigated. Differential scanning calorimetry, differential thermogravimetry, dynamic mechanical thermal analysis, and scanning electronic microscopy measurements were used for thermomechanical and thermal decomposition properties assessment. The results obtained indicate that lower glass transitions of the propellants and catalytic effect of combustion are obtained with POAP.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号