首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   6篇
物理学   6篇
  2014年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2005年   1篇
  2001年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
C. Rohmann  J.B. Metson  H. Idriss 《Surface science》2011,605(17-18):1694-1703
The adsorption of CO on α-Al2O3(0001) was studied using the DFT-GGA computational method and on α-Al2O3 powder experimentally by Infra red spectroscopy. The core and valence level regions of α-Al2O3(0001) single crystal surface were also studied experimentally. Ar ions sputtering of the surface results in a slight but reproducible decrease in the XPS O2p lines in the valence band regions due to preferential removal of surface (and near surface) O atoms. Core level XPS O1s and Al2p further confirmed oxygen depletion with an associated surface stoichiometry close to Al2O2.9. The adsorption energy of CO was computed and found equal to 0.52 eV for θ = 0.25, it decreased to 0.42 eV at θ = 1. The IR frequency of νCO was also computed and in all cases it was blue shifted with respect to gas phase CO. The shift, Δν, decreased with increasing coverage where it was found equal to 56 cm? 1 for θ = 0.25 and decreased to 30 cm? 1 for θ = 1. Structural analyses indicated that the change in the adsorption energy and the associated frequency shift is due to surface relaxation upon adsorption. Experimentally the adsorption of CO gave rise to one main IR peak at 2154 cm? 1 at 0.3 Torr and above. Two far smaller peaks are also seen at lower pressures of 0.03–0.2 Torr at 2189 and 2178 cm? 1. The isosteric heat of adsorption was computed for the IR band at 2154 cm? 1 and was found equal to 0.2 eV which did not change with coverage in the investigated range up to θ = 0.6.  相似文献   
2.
Zinc oxide thin films were prepared by dc (direct current) and rf (radio frequency) magnetron sputtering on glass substrates. ZnO films produced by dc sputtering have a high resistance, while the films produced using rf sputtering are significantly more conductive. While the conductive films have a compact nodular surface morphology, the resistive films have a relatively porous surface with columnar structures in cross section. Compared to the dc sputtered films, rf sputtered films have a microstructure with smaller d spacing, lower internal stress, higher band gap energy and higher density. Dependence of conductivity on the deposition technique and the resulting d spacing , stress, density, band gap, film thickness and Al doping are discussed. Correlations between the electrical conductivity, microstructural parameters and optical properties of the films have been made. PACS 73.25.+i; 81.15.cd; 81.05.ys  相似文献   
3.

This study describes the facile synthesis of platinum nanoparticle-containing porous carbons (Pt/C) by carbonization of freeze-dried agarose gels containing potassium tetrachloroplatinate under a nitrogen atmosphere at 800 °C. By adjusting the ratio between agarose and platinate in the freeze-dried gels, the Pt content in the final Pt/C products could be systematically varied from 0–10 wt.%. Transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, X-ray photoelectron spectroscopy, Raman spectroscopy, and nitrogen physisorption measurements revealed that the Pt/C materials obtained by this method possess high surface areas (350–500 m2 g−1), narrow Pt nanoparticle size distributions (6 ± 3 nm) and nanocrystalline graphite –like carbon character. By immobilization of glucose oxidase on the surface of a 4 wt.% Pt/C electrocatalyst prepared by this route, a very sensitive amperometric glucose biosensor was obtained (response time <2 min, sensitivity 1.9 mA M−1; and a linear response with glucose concentration up to 10 mM). The simplicity and versatility of the described synthetic method suggests its application to the preparation of carbon supported noble metal catalysts including palladium/C and gold/C.

This study describes the facile synthesis of platinum nanoparticle-containing porous carbons (Pt/C) by carbonization of freeze-dried agarose gels containing potassium tetrachloroplatinate. The Pt/C materials exhibited excellent electrocatalytic activities, as demonstrated by their successful integration into amperometric glucose biosensor

  相似文献   
4.
The reaction of ethanol has been studied on the surface of rutile TiO(2)(110) by Temperature Programmed Desorption (TPD), online mass spectrometry under UV excitation and photoelectron spectroscopy while the adsorption energies of the molecular and dissociative modes of ethanol were computed using the DFT/GGA method. The most stable configuration is the dissociative adsorption in line with experimental results at room temperature. At 0.5 ML coverage the adsorption energy was found equal to 80 kJ mol(-1) for the dissociative mode (ethoxide, CH(3)CH(2)O(a) + H(a)) followed by the molecular mode (67 kJ mol(-1)). The orientation of the ethoxides along the [001] or [110] direction had minor effect on the adsorption energy although affected differently the Ti and O surface atomic positions. TPD after ethanol adsorption at 300 K indicated two main reactions: dehydration to ethylene and dehydrogenation to acetaldehyde. Pre-dosing the surface with ethanol at 300 K followed by exposure to UV resulted in the formation of acetaldehyde and hydrogen. The amount of acetaldehyde could be directly linked to the presence of gas phase O(2) in the vacuum chamber. The order of this photo-catalytic reaction with respect to O(2) was found to be 0.5. Part of acetaldehyde further reacted with O(2) under UV excitation to give surface acetate species. Because the rate of photo-oxidation of acetates (acetic acid) was slower than that of ethoxides (ethanol), the surface ended up by being covered with large amounts of acetates. A reaction mechanism for acetaldehyde, hydrogen and acetate formation under UV excitation is proposed.  相似文献   
5.
There have been many reports of the surface segregation of minor elements, especially Mg, into surface layers and oxide films on the surface of Al alloys. LM6 casting alloy (Al-12%Si) represents a challenging system to examine such segregation as the alloy features a particularly inhomogeneous phase structure. The very low but mobile Mg content (approximately 0.001 wt.%), and the surface segregation of modifiers such as Na, mean the surface composition responds in a complex manner to thermal treatment conditions. X-ray photoelectron spectroscopy (XPS) has been used to determine the distribution of these elements within the oxide film. Further investigation by dynamic secondary ion mass spectrometry (DSIMS) confirmed a strong alignment of segregated Na and Mg into distinct phases of the structure.  相似文献   
6.
Solar thermal collectors have been prepared with thin TiOxNy films deposited using ion beam assisted deposition, on Si and Cu substrates. The films are amorphous and x and y were controlled by altering the O2/N2 ratio in the gas source. After annealing at temperatures of 200 – 400 °C, films have been depth profiled using Secondary Ion Mass Spectrometry. Profiles reveal the degradation of the film, particularly for films on Cu substrates, by migration of the substrate atoms through the films, to the sample surface. In general, films with x<1 and y>1 show improved temperature stability, ultimately at the expense of a reduced transmission window. Contrary to previous suggestions in the literature, the degradation mechanism initially involves the formation of a nitrogen rich phase, rather than an oxide at the film surface. On copper substrates, the nature of the films and of this phase, formed by diffusion of the substrate atoms, have been investigated by X-ray photoelectron spectroscopy (XPS). These investigations reveal complex behaviour in the early stages of film failure, with the suggestion that the initial films, at least near the surface, are two phase, and the reaction layer mixes the TiOxNy with some Ti replacement by ions from the Cu substrate.  相似文献   
7.
This study describes the facile synthesis of platinum nanoparticle-containing porous carbons (Pt/C) by carbonization of freeze-dried agarose gels containing potassium tetrachloroplatinate under a nitrogen atmosphere at 800 °C. By adjusting the ratio between agarose and platinate in the freeze-dried gels, the Pt content in the final Pt/C products could be systematically varied from 0–10 wt.%. Transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, X-ray photoelectron spectroscopy, Raman spectroscopy, and nitrogen physisorption measurements revealed that the Pt/C materials obtained by this method possess high surface areas (350–500 m2 g?1), narrow Pt nanoparticle size distributions (6 ± 3 nm) and nanocrystalline graphite –like carbon character. By immobilization of glucose oxidase on the surface of a 4 wt.% Pt/C electrocatalyst prepared by this route, a very sensitive amperometric glucose biosensor was obtained (response time <2 min, sensitivity 1.9 mA M?1; and a linear response with glucose concentration up to 10 mM). The simplicity and versatility of the described synthetic method suggests its application to the preparation of carbon supported noble metal catalysts including palladium/C and gold/C. Figure
This study describes the facile synthesis of platinum nanoparticle-containing porous carbons (Pt/C) by carbonization of freeze-dried agarose gels containing potassium tetrachloroplatinate. The Pt/C materials exhibited excellent electrocatalytic activities, as demonstrated by their successful integration into amperometric glucose biosensor  相似文献   
8.
9.
Oxide formation on a clean AZ91-Mg alloy surface has been characterized by X-ray photoelectron spectroscopy (XPS), while the chemical composition of a mirror-polished sample was assessed by scanning Auger microscopy (SAM) and scanning electron microscopy (SEM) at different microstructural regions, referred to as the grain boundary, matrix and particle regions. XPS and SAM confirmed that Mg and Al are always present in the surface regions probed, whereas bulk characterization with energy dispersive X-ray (EDX) analysis was necessary to detect the additional alloying elements, Mn and Zn. Coating by 1% solutions of BTSE, γ-GPS and γ-APS at their natural pH values gave etching of the surface Mg oxide. Adsorption occurs on the different regions, but the attachment is weak, especially because of the fragile nature of the underlying substrate. However, increasing the concentration of BTSE to 4% formed a thicker and denser coating with better prospects for substrate protection.  相似文献   
10.
With the use of the "falling pH" approach, the free floating films obtained at the air/liquid interface during aniline oxidative polymerization in the presence of hydrochloric acid have been reported and characterized for the first time. The surface of the films is compact and consists of small densely packed particles (around 10-20 nm in diameter). In addition to the free floating films the precipitation of various self-assembled nanostructures was also observed. The thickness of the films depends on the concentration of the reactants and ranges from 40 to 50 nm. Scanning electron microscopy (SEM) and transmission electron microscopy results imply that 3D nanostructures are physically adsorbed onto the film and that they represent two separated phases. Fourier transform infrared (FTIR) and UV-vis measurements have confirmed the presence of polyaniline and branched oligoanilines. On the basis of an orientation distribution of H(2)O and aniline molecules at the air/liquid interface and with the use of the cooperative effect of hydrogen-bond formation, a mechanism for film growth has been proposed. Three samples are synthesized in the presence of different acids-nitric, sulfuric, and acetic. The SEM and FTIR data showed similar morphologies and structural characteristics. This implies that the morphology and structure of the final products depend on the acidity conditions (pH) during the reaction rather than on the nature of the dopant acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号