首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   1篇
数学   2篇
  2021年   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Airport runway optimization is an ongoing challenge for air traffic controllers. Since demand for air-transportation is predicted to increase, there is a need to realize additional take-off and landing slots through better runway scheduling. In this paper, we review the techniques and tools of operational research and management science that are used for scheduling aircraft landings and take-offs. The main solution techniques include dynamic programming, branch and bound, heuristics and meta-heuristics.  相似文献   
2.
Airport runway scheduling   总被引:2,自引:0,他引:2  
Airport runway optimization is an ongoing challenge for air traffic controllers. Since demand for air-transportation is predicted to increase, there is a need to realize additional take-off and landing slots through better runway scheduling. In this paper, we review the techniques and tools of operational research and management science that are used for scheduling aircraft landings and take-offs. The main solution techniques include dynamic programming, branch and bound, heuristics and meta-heuristics.  相似文献   
3.

Conical enclosures rely on the conical cavity and can be used as radiation concentrators. Two circular cross-section baffles were used to improve the heat transfer of this geometry. By changing the rigid fins to porous, it could improve the heat transfer. Al2O3/water nanofluid was also employed to enhance the heat transfer performance of the cavity. For this purpose, numerical analysis of three-dimensional natural convection heat transfer was performed in a conical cavity with two types of fins. The best combination of fins arrangement for the next step was selected using the differential evolutionary optimization method (D.E). In this case study, a new combination of laminar and turbulence methods was employed for the first time to increase the accuracy of the natural convection solution. This combination is based on the laminar solution by suppressing the perturbation parameter in the turbulence method which led to more accurate results. The analysis results showed that a conical cavity with optimized fin geometry can lead to a 23% increase in Nu. The best porosity for the inner fin was calculated 40% in the case of constant porosity. Ascending porosity along the fin, whose increase was more intense near the base and slower near the cone's tip, was the best variable porosity for the inner fin.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号