首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   11篇
  2011年   1篇
  2009年   2篇
  2006年   1篇
  1997年   2篇
  1995年   2篇
  1992年   2篇
  1988年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
This work involves interferometric ‘optical thickness’ and refractive index measurements performed in an optical thickness meter (OTM), on supported cellulose acetate (CA) films equilibrated with various activities of methylene chloride (MC) vapor. The relevant equilibrium sorption and volume swelling isotherms were determined by application of the Claussius-Mossotti equation on the assumption that these films swell unidimensionally along the thickness direction, and were compared with corresponding direct equilibrium sorption (weight gain), elongation and thickness dilation measurements on similar free films performed in a vacuum sorption/swelling apparatus (VSA) and complemented with refractive index data. Combined elongation and thickness dilation data from the VSA showed that free glass-cast CA films exhibit pronounced swelling anisotropy. The said anisotropy, although it cannot be completely eliminated, by conditioning at high degrees of swelling, does not appear to affect the extent of volume swelling significantly, thus permitting quantitative comparison of sorption and swelling isotherms determined by the VSA and the OTM. Such comparison showed satisfactory agreement between these two sets of results up to an MC uptake of ca. 0.4 gMC/cm3 of dry CA corresponding to a degree of swelling of ca. 0.2. Increasing discrepancies are observed at higher MC concentrations, which are attributable to breakdown of the assumption used that the supported films swell unidimensionally along the thickness direction. The present CA-MC volume swelling data exhibit the negative deviation from volume additivity on mixing typical glassy polymers.  相似文献   
2.
Non‐Fickian sorption kinetics of methanol vapor in a poly(methyl methacrylate) film of 8 μm, at 35 °C, are presented. The behavior of the system was studied in series of interval absorption runs. The relevant diffusion and viscous relaxation processes were studied by kinetic analysis of the sorption kinetic curves, using the relaxation‐dependent solubility model. The sorption isotherm concaves upward at high activities, typical to Florry–Huggins behavior, while it exhibits a convex‐upward curvature at low methanol vapor activities, indicating sorption in the excess free volume of the polymer matrix. Thermodynamic diffusivity presents a complex functional dependence on the concentration, while relaxation rate is found to be a function of concentration as well as of concentration interval. Relaxation rate becomes increasingly concentration‐dependent as the effective glass transition of the system is approached. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3173–3184, 2006  相似文献   
3.
A detailed study of the kinetics and mechanism of micromolecular transport in cellulose acetate films containing 2.0 acetate groups per glucose unit (CA-2.0) is reported. The polymer was prepared by controlled hydrolysis of CA-2.45 films studied in preceding articles. The same series of simple liquid penetrants varying from weak swelling agent to good solvent of the polymer was used. As before, measurement of rates of penetration along the polymer film confined between glass plates was supplemented with information on penetrant distribution profiles in the polymer film and on the corresponding deformation and structural relaxation of the swelling polymer, deduced from refractive index and birefringence profiles, respectively. Transport was studied in (a) unoriented CA-2.0 films and (b) uniaxially oriented films with penetration normal and parallel to the orientation axis. This was equivalent to varying the viscoelastic polymer properties affecting transport, under otherwise identical experimental conditions. The results complemented and extended those previously obtained with CA-2.45 in interesting ways and were successfully interpreted on the basis of a previously developed theoretical model designed to represent the influence of (a) the stress generated by the constraints imposed on the swelling polymer, and (b) the viscoelastic response of the latter thereto, on the transport mechanism. It was shown that the observed differences in transport mechanism in CA-2.45 and CA-2.0 are primarily related to the corresponding changes in the sorptive capacity of the polymer for the relevant penetrant rather than the chemical constitution of the latter. The most striking result in this respect was that the remarkable kinetic pattern (which involved a drastic change from Case I kinetics for penetration across, to Case II kinetics for penetration along, the axis of orientation) exhibited by oriented CA-2.45 film penetrated by the strong swelling agent of the series of penetrants used, namely methylene chloride, was reproduced here for the penetration of acetone, which occupies the slot of strong swelling agent in the case of CA-2.0. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2593–2607, 1997  相似文献   
4.
The kinetics of sorption of micromolecular swelling agents by polymeric media often deviates from normal Fickian behavior in various ways, which have to be understood and interpreted, with the aid of appropriate models, in terms of the underlying physics. One difficulty which arises in this respect is that salient aspects of the observed kinetic behavior can be mimicked by extraneous effects, in the form of significant deviation from a boundary condition or of imperfect macroscopic homogeneity of the polymer film (modeled in both cases as a surface resistance to penetrant transport). Such effects have, in fact, been invoked (notably by Hansen (2010) [11]) to question the significance of conclusions drawn from modeling approaches based on the effect of intrinsic bulk polymer properties, leading to delayed (viscous) swelling and to build-up and decay of differential swelling stresses. We present here a brief critical account (following the mainstream modeling line initiated by Crank) of typical results concerning various salient aspects of observed non-Fickian sorption kinetics and of the comparative possibility of achieving satisfactory general interpretation thereof, in terms of approaches based on the aforementioned extraneous, versus intrinsic bulk property, effects. We find that the latter approach has been successful so far, both computationally and physically, by establishing a close physically significant analogy between non-Fickian sorption, and (both linear and non-linear) viscoelastic mechanical deformation, behavior. The former approach, on the other hand, proves weak on both counts.  相似文献   
5.
Longitudinal swelling kinetics of cellulose acetate films sorbing acetone vapor at 30°C were studied under various conditions and correlated with the corresponding sorption kinetic measurements reported in Part I. The results were analyzed in the light of (1) previous theoretical studies of simple viscoelastic polymer-penetrant model systems and (2) mechanical stress-strain data on the cellulose acetate-acetone system, which are also reported here. The conclusions drawn from this analysis confirm and/or amplify (particularly as regards the effect of longitudinal differential swelling stresses) our previous interpretations based on sorption kinetic analysis, concerning the physical nature and causes of various features of the non-Fickian kinetic behavior of cellulosic polymer-micromolecular penetrant systems. History-dependent long-term aging effects were also observed and investigated. © 1995 John Wiley & Sons, Inc.  相似文献   
6.
In this series of papers, a new model has been presented for symmetrical, planar, three-layer (ABA) matrix-controlled release (MCR) devices, wherein all the advanced features of a previous monolithic MCR model have been incorporated. An extensive parametric study was performed to explore the possibilities afforded by the ABA configuration to alleviate, or even practically eliminate the undesirable features of initially very high, and subsequently continuously declining, release rates which normally characterize diffusion-limited monolithic devices. ABA matrices with uniform material properties (UMP) and layers A and B carrying different solute loads were examined in Part I. The results presented here refer to the more general case, where A and B may also represent non-uniformity in sorption and transport properties (non-UMP ABA devices). It is shown that judicious choice of two different polymeric materials for layers A and B may further improve the favorable results previously obtained for ABA–UMP matrices to the point where demands of very narrow limits for dose rate uniformity in conjunction with very high efficiency, can be met. The applicability and utility of the ABA, non-UMP model was demonstrated in a real experimental situation concerning surface-modified PVA matrices. Parameterization of the model on the basis of the experimental information provided and on literature data, resulted in successful interpretation of the effect of two different degrees of surface crosslinking on the relative rates of water uptake and proxyphylline release.  相似文献   
7.
The study of micromolecular transport in cellulose acetate film reported previously is here extended by investigation of the effect of different degrees of semipermanent uniaxial macromolecular orientation, produced by prestretching the film under suitable conditions. The changes noted in penetration rate and kinetics and in birefringence, tracer microdensitometry, and microinterferometry profiles for penetration along and across the axis of preferred orientation, are reported in detail and their implications in terms of the transport mechanism are discussed. © 1992 John Wiley & Sons, Inc.  相似文献   
8.
Various aspects of the kinetics of sorption of acetone vapor by cellulose acetate films at 30°C have been studied in detail, the principal aim being to understand more thoroughly the physical nature and causes of non-Fickian behavior in this and other similar polymer-micromolecular penetrant systems. Particular attention was given to the changes in sorption (including absorption, desorption, and resorption) kinetics caused by (a) systematic variation of the vapor pressure of acetone in different ways and (b) changes in membrane thickness. It has been shown that both viscous volume swelling relaxation and longitudinal differential swelling stress effects must be invoked, in order to explain fully the observed behavior. Detailed analysis of two-stage sorption kinetics indicated (1) reasonable agreement between estimates of the diffusion coefficient reported by different authors, as long as a consistent analysis of the first stage is used, although the significance of the values given is open to some doubt, because the said first stage is found not to be free of non-Fickian features; and (2) reasonable conformity of the second stage to a first-order volume relaxation process (except a long times), with a relaxation frequency strongly dependent on the width of the concentration interval covered by the sorption experiment (and hence on the applied “osmotic stress”). The close similarity of second-stage sorption to nonlinear viscoelastic creep behavior, previously found in the cellulose-water system was confirmed and is taken further here, by demonstrating semiquantitative agreement between the corresponding “elastic swelling” and mechanical bulk moduli. ©1995 John Wiley & Sons, Inc.  相似文献   
9.
In the present paper we further test a model of stress-dependent diffusion previously used with success to simulate the variation from Case I to Case II penetration kinetics in the system liquid methylene chloride-uniaxially oriented cellulose acetate film, according to whether penetration occurs across or along the axis of preferred macromolecular orientation. Data on penetration rates, optical density profiles (using a colored tracer), and the corresponding birefringence profiles, characteristics of these penetration modes in the aforesaid system, are presented and compared with appropriate model uptake kinetic curves and penetrant concentration and compressive differential swelling stress profiles. It is shown that the salient features of the observed experimental behavior are in general accord with model predictions based on physically realistic assumptions.  相似文献   
10.
InterDigitated Capacitive (IDC) sensor arrays are fabricated with conventional microelectronics-micromachining technologies on quartz substrates. After the IDC fabrication, a polymeric well is patterned around each IDC to precisely define the sensing area and thus deposit coatings of various polymers, by drop casting, in a reproducible and controlled manner. The performance of the coated IDC array is evaluated in terms of IDC critical dimension, measurement frequency and for two analytes and guidelines for improved sensing performance are proposed. Through careful selection of the polymeric coatings in conjunction with suitable signal processing, discrimination of VOCs is possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号