首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   3篇
化学   67篇
数学   10篇
物理学   4篇
  2023年   1篇
  2022年   5篇
  2021年   9篇
  2020年   5篇
  2019年   4篇
  2018年   5篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   1篇
  2013年   9篇
  2012年   5篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2001年   1篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
1.
This study compares the physicochemical properties of six electrolytes comprising of three salts: LiFTFSI, NaFTFSI and KFTFSI in two solvent mixtures, the binary (3EC/7EMC) and the ternary (EC/PC/3DMC). The transport properties (conductivity, viscosity) as a function of temperature and concentration were modeled using the extended Jones-Dole-Kaminsky equation, the Arrhenius model, and the Eyring theory of transition state for activated complexes. Results are discussed in terms of ionicity, solvation shell, and cross-interactions between electrolyte components. The application of the six formulated electrolytes in symmetrical activated carbon (AC)//AC supercapacitors (SCs) was characterized by cyclic voltammetry (CV), galvanostatic cycling with potential limitation (GCPL), electrochemical impedance spectroscopy (EIS) and accelerated aging. Results revealed that the geometrical flexibility of the FTFSI anion allows it to access and diffuse easily in AC whereas its counter ions (Li+, Na+ or K+) can remain trapped in porosity. However, this drawback was partially resolved by mixing LiFTFSI and KFTFSI salts in the electrolyte.  相似文献   
2.
In the objective of optimizing water exchange rate on stable, nine-coordinate, monohydrated Gd(III) poly(amino carboxylate) complexes, we have prepared monopropionate derivatives of DOTA4- (DO3A-Nprop4-) and DTPA5- (DTTA-Nprop5-). A novel ligand, EPTPA-BAA(3-), the bisamylamide derivative of ethylenepropylenetriamine-pentaacetate (EPTPA5-) was also synthesized. A variable temperature 17O NMR study has been performed on their Gd(III) complexes, which, for [Gd(DTTA-Nprop)(H2O)]2- and [Gd(EPTPA-BAA)(H2O)] has been combined with multiple field EPR and NMRD measurements. The water exchange rates, k(ex)(298), are 8.0 x 10(7) s(-1), 6.1 x 10(7) s(-1) and 5.7 x 10(7) s(-1) for [Gd(DTTA-Nprop)(H2O)]2-, [Gd(DO3A-Nprop)(H2O)]- and [Gd(EPTPA-BAA)(H2O)], respectively, all in the narrow optimal range to attain maximum proton relaxivities, provided the other parameters (electronic relaxation and rotation) are also optimized. The substitution of an acetate with a propionate arm in DTPA5- or DOTA4- induces increased steric compression around the water binding site and thus leads to an accelerated water exchange on the Gd(III) complex. The k(ex) values on the propionate complexes are, however, lower than those obtained for [Gd(EPTPA)(H2O)]2- and [Gd(TRITA)(H2O)]- which contain one additional CH(2) unit in the amine backbone as compared to the parent [Gd(DTPA)(H2O)]2- and [Gd(DOTA)(H2O)]-. In addition to their optimal water exchange rate, [Gd(DTTA-Nprop)(H2O)]2- has, and [Gd(DO3A-Nprop)(H2O)]- is expected to have sufficient thermodynamic stability. These properties together make them prime candidates for the development of high relaxivity, macromolecular MRI contrast agents.  相似文献   
3.
An inorganic compound formulated as K3.31(NH4)0.69[Se2Mo5O21]·2H2O has been synthesized by conventional solution method and characterized by scanning electron microscopy, IR, UV-Vis spectroscopies behaviors. The structure of the title compound has been determined from a single-crystal X-ray diffraction. It crystallizes in the monoclinic space group P21/n, with a?=?9.9371(2) ?, b?=?23.3545(2) ?, c?=?10.5179(2) ?, β?=?114.12(3)°, V?=?2227.7(5) ?3 and Z?=?4. It was revealed that the Strandberg-type polyoxoselenomolybdate cluster can be considered as a ring formed by five distorted edge- and corner-sharing MoO6 octahedra, capped on both poles by a selenate pyramids sharing three vertices with the ring molybdenum centers. The Strandberg clusters are connected with ammonium ions and water molecules through hydrogen-bonding interactions which ensure the cohesion of the structure into a three-dimensional network.  相似文献   
4.
Cucurbita moschata Duchesne (Cucurbitaceae) is a plant food highly appreciated for the content of nutrients and bioactive compounds, including polyphenols and carotenoids, which contribute to its antioxidant and antimicrobial capacities. The purpose of this study was to identify phenolic acids and flavonoids of Cucurbita moschata Duchesne using high-performance liquid chromatography–diode array detection–electrospray ionization tandem mass spectrometry (HPLC–DAD–ESI-MS) at different ripening stages (young, mature, ripened) and determine its antioxidant and antimicrobial activities. According to the results, phenolic acids and flavonoids were dependent on the maturity stage. The mature fruits contain the highest total phenolic and flavonoids contents (97.4 mg GAE. 100 g−1 and 28.6 mg QE. 100 g−1).A total of 33 compounds were identified. Syringic acid was the most abundant compound (37%), followed by cinnamic acid (12%) and protocatechuic acid (11%). Polyphenol extract of the mature fruits showed the highest antioxidant activity when measured by DPPH (0.065 μmol TE/g) and ABTS (0.074 μmol TE/g) assays. In the antimicrobial assay, the second stage of ripening had the highest antibacterial activity. Staphylococcus aureus was the most sensitive strain with an inhibition zone of 12 mm and a MIC of 0.75 mg L−1. The lowest inhibition zone was obtained with Salmonella typhimurium (5 mm), and the MIC value was 10 mg L−1.  相似文献   
5.
Benaziza  B.  Benamar  A.  Helaili  N.  Zaghrioui  M.  Anouti  M.  Trari  M. 《Research on Chemical Intermediates》2021,47(2):649-661

We have studied the effect of the reducing gas (H2, CO and CH4) on the hydrogen production by thermo-oxidation of water over the 1%Rh/Ce0.6Zr0.4O2 catalyst prepared by impregnation. The catalyst is characterized by hydrogen chemisorption (Hc), before and after catalytic decomposition of water, temperature-programmed desorption, temperature-programmed reduction, X-ray diffraction and scanning electron microscopy. The catalyst is reduced in situ at 500 °C (4 h) under H2, CO or CH4 flows and flushed with Ar gas. Then, pulses of water (1 μL/pulse) are injected at 500 °C under Ar flow (30 mL/min). The results show clearly that the reducing gas has a strong effect on the H2 production which follows the order: H2?>?CH4?>?>?CO. H2 chemisorption measurements at room temperature highlight a strong metal–support interaction over fresh reduced catalysts which decreases after water decomposition (reduced centers?+?H2O?→?oxidized centers?+?H2).

  相似文献   
6.
7.
Coffee, one of the most popular beverages in the world, attracts consumers by its rich aroma and the stimulating effect of caffeine. Increasing consumers prefer decaffeinated coffee to regular coffee due to health concerns. There are some main decaffeination methods commonly used by commercial coffee producers for decades. However, a certain amount of the aroma precursors can be removed together with caffeine, which could cause a thin taste of decaffeinated coffee. To understand the difference between regular and decaffeinated coffee from the volatile composition point of view, headspace solid-phase microextraction two-dimensional gas chromatography time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS) was employed to examine the headspace volatiles of eight pairs of regular and decaffeinated coffees in this study. Using the key aroma-related volatiles, decaffeinated coffee was significantly separated from regular coffee by principal component analysis (PCA). Using feature-selection tools (univariate analysis: t-test and multivariate analysis: partial least squares-discriminant analysis (PLS-DA)), a group of pyrazines was observed to be significantly different between regular coffee and decaffeinated coffee. Pyrazines were more enriched in the regular coffee, which was due to the reduction of sucrose during the decaffeination process. The reduction of pyrazines led to a lack of nutty, roasted, chocolate, earthy, and musty aroma in the decaffeinated coffee. For the non-targeted analysis, the random forest (RF) classification algorithm was used to select the most important features that could enable a distinct classification between the two coffee types. In total, 20 discriminatory features were identified. The results suggested that pyrazine-derived compounds were a strong marker for the regular coffee group whereas furan-derived compounds were a strong marker for the decaffeinated coffee samples.  相似文献   
8.
Herein, a facile method was developed for preparing high concentration of monodispersed gold nanoparticles (NPs) at room temperature from gold(III) chloride by using different media based on N,N-dimethylformamide or water solutions containing a protic ionic liquid (PIL), namely, the octylammonium formate or the bis(2-ethyl-hexyl)ammonium formate, based on which both PILs were used as redox-active structuring media. The formation of gold NPs in these systems was then characterized using UV–visible spectroscopy, transmission electron microscopy, and dynamic light scattering. From these investigations, it appears that the structure and aggregation pathway of PILs in selected solvents affect strongly the formation, growth, the shape, and the size of gold NPs. In fact, by using this approach, the shape-/ size-controlled gold NPs (branched and spherical) can be generated under mild condition. This approach suggests also a wealth of potential for these designer nanomaterials within the biomedical, materials, and catalysis communities by using designer and safer media based on PILs.  相似文献   
9.
Brain functions rely on neurotransmitters that mediate communication between billions of neurons. Disruption of this communication can result in a plethora of psychiatric and neurological disorders. In this work, we combine molecular dynamics simulations, live-cell biosensor and electrophysiological assays to investigate the action of the neurotransmitter dopamine at the dopaminergic D2 receptor (D2R). The study of dopamine and closely related chemical probes reveals how neurotransmitter binding translates into the activation of distinct subsets of D2R effectors (i.e.: Gi2, GoB, Gz and β-arrestin 2). Ligand interactions with key residues in TM5 (S5.42) and TM6 (H6.55) in the D2R binding pocket yield a dopamine-like coupling signature, whereas exclusive TM5 interaction is typically linked to preferential G protein coupling (in particular GoB) over β-arrestin. Further experiments for serotonin receptors indicate that the reported molecular mechanism is shared by other monoaminergic neurotransmitter receptors. Ultimately, our study highlights how sequence variation in position 6.55 is used by nature to fine-tune β-arrestin recruitment and in turn receptor signaling and internalization of neurotransmitter receptors.

Neurotransmitter contacts within the receptor binding site differentially contribute to the overall functional response: transmembrane helix (TM) 5 contacts promote G protein coupling whereas concerted TM5–TM6 contacts enhance β-arrestin recruitment.  相似文献   
10.
The development of a suitable functional electrolyte is urgently required for fast-charging and high-voltage alkali-ion (Li, Na, K) batteries as well as next-generation hybrids supercapacitors. Many recent works focused on an optimal selection of electrolytes for alkali-ion based systems and their electrochemical performance but the understanding of the fundamental aspect that explains their different behaviour is rare. Herein, we report a comparative study of transport properties for LiPF6, NaPF6, KPF6 in acetonitrile (AN) and a binary mixture of ethylene carbonate (EC), dimethyl carbonate (DMC): (EC/DMC : 1/1, weigh) through conductivities, densities and viscosities measurements in wide temperature domain. By application of the Stokes-Einstein, Nernst-Einstein, and Jones Dole equations, the effective ionic solvated radius of cation (reff), the ionic dissociation coefficient (αD) and structuring Jones Dole's parameters (A, B) for salt are calculated and discussed according to solvent or cation nature as a function of temperature. From the results, we demonstrate that better mobility of potassium can be explained by the nature of the ion-ion and ion-solvent interactions due to its polarizability. In the same time, the predominance of triple ions in the case of K+, is a disadvantage at high concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号