首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   534篇
  免费   29篇
  国内免费   4篇
化学   416篇
晶体学   12篇
力学   11篇
数学   59篇
物理学   69篇
  2023年   14篇
  2022年   13篇
  2021年   14篇
  2020年   20篇
  2019年   22篇
  2018年   13篇
  2017年   6篇
  2016年   25篇
  2015年   16篇
  2014年   26篇
  2013年   22篇
  2012年   52篇
  2011年   51篇
  2010年   28篇
  2009年   19篇
  2008年   30篇
  2007年   26篇
  2006年   31篇
  2005年   25篇
  2004年   16篇
  2003年   16篇
  2002年   13篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1996年   3篇
  1995年   4篇
  1993年   3篇
  1991年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1974年   3篇
  1972年   6篇
  1971年   1篇
  1969年   2篇
  1968年   2篇
  1967年   1篇
  1966年   2篇
  1964年   1篇
  1936年   4篇
  1934年   1篇
排序方式: 共有567条查询结果,搜索用时 11 毫秒
1.
2.
Methods have been developed for the labelling of acetate and palmitic acid with the positron-emitting radionuclide,11C (T=20.4 min). Labelling was achieved via carbonation of the appropriate alkyl magnesium bromide (methyl magnesium bromide or n-pentadecyl magnesium bromide) with11C-labelled carbon dioxide produced by the14N(p, α)11C nuclear reaction. The radiochemical yield and speed of each method of labelling are such that a radiochemically pure product is obtained in injectable form and in activity (>10 mCi) suitable for the study of myocardial metabolism by emission-computerised axial tomography. High pressure liquid chromatography and thin layer chromatography were used to assess the radiochemical purity of each radiopharmaceutical. The specific activity of11C-labelled acetate was estimated by an enzymic procedure to be greater than 0.5 Ci/μmole.  相似文献   
3.
13C, 14N, 15N, 17O, and 35Cl NMR parameters, including chemical shift tensors and quadrupolar tensors for 14N, 17O, and 35Cl, are calculated for the crystalline forms of various amino acids under periodic boundary conditions and complemented by experiment where necessary. The 13C shift tensors and 14N electric field gradient (EFG) tensors are in excellent agreement with experiment. Similarly, static 17O NMR spectra could be precisely simulated using the calculation of the full chemical shift (CS) tensors and their relative orientation with the EFG tensors. This study allows correlations to be found between hydrogen bonding in the crystal structures and the 17O NMR shielding parameters and the 35Cl quadrupolar parameters, respectively. Calculations using the two experimental structures for L-alanine have shown that, while the calculated isotropic chemical shift values of 13C and 15N are relatively insensitive to small differences in the experimental structure, the 17O shift is markedly affected.  相似文献   
4.
Integration between a hand-held mass spectrometry desorption probe based on picosecond infrared laser technology (PIRL-MS) and an optical surgical tracking system demonstrates in situ tissue pathology from point-sampled mass spectrometry data. Spatially encoded pathology classifications are displayed at the site of laser sampling as color-coded pixels in an augmented reality video feed of the surgical field of view. This is enabled by two-way communication between surgical navigation and mass spectrometry data analysis platforms through a custom-built interface. Performance of the system was evaluated using murine models of human cancers sampled in situ in the presence of body fluids with a technical pixel error of 1.0 ± 0.2 mm, suggesting a 84% or 92% (excluding one outlier) cancer type classification rate across different molecular models that distinguish cell-lines of each class of breast, brain, head and neck murine models. Further, through end-point immunohistochemical staining for DNA damage, cell death and neuronal viability, spatially encoded PIRL-MS sampling is shown to produce classifiable mass spectral data from living murine brain tissue, with levels of neuronal damage that are comparable to those induced by a surgical scalpel. This highlights the potential of spatially encoded PIRL-MS analysis for in vivo use during neurosurgical applications of cancer type determination or point-sampling in vivo tissue during tumor bed examination to assess cancer removal. The interface developed herein for the analysis and the display of spatially encoded PIRL-MS data can be adapted to other hand-held mass spectrometry analysis probes currently available.

Integration between a hand-held mass spectrometry desorption probe based on picosecond infrared laser technology (PIRL-MS) and an optical surgical tracking system demonstrates in situ tissue pathology from point-sampled mass spectrometry data.  相似文献   
5.
A series of triorganotin 2-(p-chlorophenyl)-3-methylbutyrates, (R3SnO2CCH(CH(CH3)2)C6H4Cl-4), where R = methyl, ethyl, n-propyl, n-butyl, phenyl and cyclo-hexyl, have been synthesized. Elemental analyses, Mössbauer, Infrared and NMR spectroscopies have been used to characterize their structures. Based on the spectroscopic results, all the complexes with the exception of the tricyclohexyl compound were found to be five-coordinated in the solid state while the tricyclohexyltin derivative was determined to be four-coordinated. Structural assignments based on spectroscopic data are supported by the crystallographic results of four of the triorganotin butyrates (trimethyl-, tri-n-propyl-, tri-n-butyl- and tricyclohexyltin 2-(p-chlorophenyl)-3-methylbutyrate). Multinuclear NMR spectroscopy studies indicated that all the complexes were tetrahedral in solution. Larvicidal activities of the complexes were evaluated against the 2nd instar stage of the Anopheles stephensi, Aedes aegypti and Culex pipiens quinquefasciatus mosquitoes. The toxicity data indicate that there does not appear to be any significant differences of the compounds towards the different mosquito species based on their averaged toxicity values. In addition, the toxicity of the triorganotin compounds towards the mosquito larvae was concluded to be dependent on both the compound and the species of mosquito larvae.  相似文献   
6.
Characteristics of methyl methacrylate (MMA) polymerization using oscillating zirconocene catalysts, (2-Ph-Ind)2ZrX2 (X = Cl, 1; X = Me, 2), mixtures of rac- and meso-zirconocene diastereomers, (SBI)ZrMe2 [3, SBI = Me2Si(Ind)2] and (EBI)ZrMe2 [4, EBI = C2H4(Ind)2], as well as diastereospecific metallocene pairs, rac-4/Cp2ZrMe2 (5) and rac-4/CGCTiMe2 [6, CGC = Me2Si(Me4C5)(t-BuN)], are reported. MMA polymerization using the chloride catalyst precursor 1 activated with a large excess of the modified methyl aluminoxane is sluggish, uncontrolled, and produces atactic PMMA. On the other hand, the polymerization by a 2/1 ratio of 2/B(C6F5)3 or 2/Ph3CB(C6F5)4 is controlled and produces syndiotactic PMMA. Mixtures of diastereomeric ansa-zirconocenes 3 or 4 containing various rac/meso ratios, when activated with B(C6F5)3, yield bimodal PMMA; this behavior is attributed to the meso-diastereomer that, in its pure form, affords bimodal, syndio-rich atactic PMMA. For MMA polymerization using diastereospecific metallocene pairs, rac-4/5 and rac-4/6, the isospecific catalyst site dominates the polymerization events under the conditions employed in this study, and the aspecific and syndiospecific sites are largely nonproductive, thereby forming only highly isotactic PMMA.  相似文献   
7.
The interactions of synthetic chalcocite surfaces with diethyldithiophosphate, potassium salt, K[S2P(OC2H5)2], were studied by means of 31P cross-polarization/magic angle spinning (CP/MAS) NMR spectroscopy and scanning electron microscopy (SEM). To identify the species formed on the Cu2S surfaces, a polycrystalline {CuI6[S2P(OC2H5)2]6} cluster was synthesized and analyzed by SEM, powder X-ray diffraction techniques and solid-state 31P CP/MAS NMR and static 65Cu NMR spectroscopy. 31P chemical shift anisotropy (CSA) parameters, delta(cs) and eta(cs), were estimated and used for assigning the bridging type of diethyldithiophosphate ligands in the {CuI6[S2P(OC2H5)2]6} cluster. The latter data were compared to 31P CSA parameters estimated from the spinning sideband patterns in 31P NMR spectra of the collector-treated mineral surfaces: formation of polycrystalline {CuI6[S2P(OC2H5)2]6} on the Cu2S surfaces is suggested. The second-order quadrupolar line shape of 65Cu was simulated, and the NMR interaction parameters, CQ and etaQ, for the copper(I) diethyldithiophosphate cluster were obtained.  相似文献   
8.
9.
The one-pot synthesis of well-defined block copolymers of olefins/1,3-dienes and polar monomers, such as cyclic esters and acrylates has long been the focus of intense research. Cationic alkyl rare earth metal catalysts, activated by organoborates, have shown to be promising for the polymerization of isoprene or styrene and ε-caprolactone. In this study, we synthesize a series of yttrium bis(alkyl) complexes supported by simple β-diketiminate ancillary ligands. Subtle changes have been made to the β-diketiminate ligand framework to elucidate the effect of ligand structure on the rate and selectivity of olefin/1,3-diene and cyclic ester polymerization, with small ligand changes having a large impact on the resulting polymerizations. Generation of the active cationic species was easily streamlined by identification of appropriate catalyst : organoborate ratios, allowing for high catalyst efficiencies. Notably, we demonstrate the first cationic rare earth metal alkyl-initiated polymerization of δ-valerolactone and ε-decalactone as well as introduced five new block copolymer morphologies. In addition, selective degradation of the ester block in poly(isoprene-b-caprolactone) enabled recovery of the polyisoprene block with identical spectroscopic and thermal properties. Significantly, recopolymerization of the recovered poly(1,3-diene) with fresh ε-caprolactone reproduced the desired diblocks with nearly identical thermal and physical properties to those of virgin copolymer, illustrating a plausible recycling scheme for these materials.

Ligand features that promote one-pot block copolymerization of 1,3-dienes and cyclic esters were realized with yttrium β-diketiminate complexes. Depolymerization and repolymerization of the polyester block introduced a plausible recycling strategy.  相似文献   
10.
The novel use of nanofibers as a physical barrier between blood and medical devices has allowed for modifiable, innovative surface coatings on devices ordinarily plagued by thrombosis, delayed healing, and chronic infection. In this study, the nitric oxide (NO) donor S‐nitrosoglutathione (GSNO) is blended with the biodegradable polymers polyhydroxybutyrate (PHB) and polylactic acid (PLA) for the fabrication of hemocompatible, antibacterial nanofibers tailored for blood‐contacting applications. Stress/strain behavior of different concentrations of PHB and PLA is recorded to optimize the mechanical properties of the nanofibers. Nanofibers incorporated with different concentrations of GSNO (10, 15, 20 wt%) are evaluated based on their NO‐releasing kinetics. PLA/PHB + 20 wt% GSNO nanofibers display the greatest NO release over 72 h (0.4–1.5 × 10?10 mol mg?1 min?1). NO‐releasing fibers successfully reduce viable adhered bacterial counts by ≈80% after 24 h of exposure to Staphylococcus aureus. NO‐releasing nanofibers exposed to porcine plasma reduce platelet adhesion by 64.6% compared to control nanofibers. The nanofibers are found noncytotoxic (>95% viability) toward NIH/3T3 mouse fibroblasts, and 4′,6‐diamidino‐2‐phenylindole and phalloidin staining shows that fibroblasts cultured on NO‐releasing fibers have improved cellular adhesion and functionality. Therefore, these novel NO‐releasing nanofibers provide a safe antimicrobial and hemocompatible coating for blood‐contacting medical devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号