首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   0篇
  国内免费   1篇
化学   55篇
晶体学   1篇
力学   3篇
数学   3篇
物理学   51篇
  2022年   2篇
  2019年   2篇
  2015年   1篇
  2013年   12篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1989年   3篇
  1987年   1篇
  1986年   2篇
  1983年   3篇
  1982年   5篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1943年   2篇
排序方式: 共有113条查询结果,搜索用时 234 毫秒
1.
2.
The self-exchange rate constant (25 degrees C) for parsley plastocyanin is 5.0 x 10(4) M-1 s-1 at pH* 7.5 (I = 0.10 M). This value is quite large for a higher plant plastocyanin and can be attributed to a diminished upper acidic patch in this protein. The self-exchange rate constant is almost independent of pH* in the range 7.5-5.6, with a value (25 degrees C) of 5.6 x 10(4) M-1 s-1 at pH* 5.6 (I = 0.10 M). At this pH*, the ligand His87 is protonated in approximately 50% of the reduced protein molecules (pKa* 5.6), and this would be expected to hinder electron transfer between the two oxidation states. However, this effect is counterbalanced by the enhanced association of two parsley plastocyanins at lower pH* due to the partial protonation of the acidic patch.  相似文献   
3.
4.
5.
6.
A series of terminal alkynes has been reacted with sodium perborate and mercuric acetate catalyst in acetic acid to produce 1-acetoxyalkan-2-ones in good yield. The reaction constitutes a mild and convenient method for the oxidation of terminal triple bonds.  相似文献   
7.
ABSTRACT: BACKGROUND: The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). RESULTS: The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0--20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. CONCLUSIONS: The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.  相似文献   
8.
The binding of small gas molecules such as NO and CO plays a major role in the signaling routes of the human body. The sole NO-receptor in humans is soluble guanylyl cyclase (sGC) – a histidine-ligated heme protein, which, upon NO binding, activates a downstream signaling cascade. Impairment of NO-signaling is linked, among others, to cardiovascular and inflammatory diseases. In the present work, we use a combination of theoretical tools such as MD simulations, high-level quantum chemical calculations and hybrid QM/MM methods to address various aspects of NO binding and to elucidate the most likely reaction paths and the potential intermediates of the reaction. As a model system, the H-NOX protein from Shewanella oneidensis (So H-NOX) homologous to the NO-binding domain of sGC is used. The signaling route is predicted to involve NO binding to form a six-coordinate intermediate heme-NO complex, followed by relatively facile His decoordination yielding a five-coordinate adduct with NO on the distal side with possible isomerization to the proximal side through binding of a second NO and release of the first one. MD simulations show that the His sidechain can quite easily rotate outward into solvent, with this motion being accompanied in our simulations by shifts in helix positions that are consistent with this decoordination leading to significant conformational change in the protein.  相似文献   
9.
Six recently proposed methods for analyzing copolymerization composition data have been compared to a nonlinear least-squares analysis to ascertain the precision of the six methods in determining reactivity ratios. Data used were simulated for five hypothetical monomer pairs with three different types of experiment design and contained error structures similar to those observed experimentally. The results of the comparisons suggest that retrospective analyses of existing copolymerization data should only be done with a nonlinear least-squares analysis. For new data, the design of experiments is of great importance, and when done properly allows the use of some of the linear least-squares methods of analysis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号