首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
化学   40篇
  2007年   1篇
  2006年   2篇
  2002年   4篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1987年   5篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
2.
Summary Treatment of [Mo{HB(3,5-Me2C3HN2)3}(NO)I2] with one or two moles of AgPF6 in acetonitrile afforded the paramagnetic (one unpaired electron) complex [Mo{HB(3,5-Me2C3NH2)3}(NO)(NCMe)2][PF6]. The structure of this complex was determined crystallographically, and the six-coordinate geometry of the complex cation confirmed.  相似文献   
3.
Summary Benzothiazole-2-selenone, BTSeH, was prepared by treating 2-chlorobenzothiazole with Na2Se, and the 6-ethoxy analogue (EtOBTSeH) was obtained similarly. From BTSeH, the species [R4N][BTSe] (R=Me, Et Bu-n), Zn-(BTSe)2(pyr)2, (BTSe)2, Zn(BTSe-)2I2 and Me2C=CH-CH(SSeTB)Me were obtained. Addition of [n-Bu4N] [BTSe] to [Zn(BTSe)2] n afforded [n-Bu4N] [Zn(BTSe)3(H2O)]. The Se n.m.r. spectra of these species are briefly reported.  相似文献   
4.
5.
6.
A series of mononuclear square-based pyramidal complexes of iron containing two 1,2-diaryl-ethylene-1,2-dithiolate ligands in various oxidation levels has been synthesized. The reaction of the dinuclear species [Fe(III)2(1L*)2(1L)2]0, where (1L)2- is the closed shell di-(4-tert-butylphenyl)-1,2-ethylenedithiolate dianion and (1L*)1- is its one-electron-oxidized pi-radical monoanion, with [N(n-Bu)4]CN in toluene yields dark green crystals of mononuclear [N(n-Bu)4][Fe(II)(1L*)2(CN)] (1). The oxidation of 1 with ferrocenium hexafluorophosphate yields blue [Fe(III)(1L*)2(CN)] (1ox), and analogously, a reduction with [Cp2Co] yields [Cp2Co][N(n-Bu)4][Fe(II)(1L*)(1L)(CN)] (1red); oxidation of the neutral dimer with iodine gives [Fe(III)(1L*)2I] (2). The dimer reacts with the phosphite P(OCH3)3 to yield [Fe(II)(1L*)2{P(OCH3)3}] (3), and [Fe(III)2(3L*)2(3L)2] reacts with P(OC6H5)3 to give [Fe(II)(3L*)2{P(OC6H5)3}] (4), where (3L)2- represents 1,2-diphenyl-1,2-ethylenedithiolate(2-). Both 3 and 4 were electrochemically one-electron oxidized to the monocations 3ox and 4ox and reduced to the monoanions 3red and 4red. The structures of 1 and 4 have been determined by X-ray crystallography. All compounds have been studied by magnetic susceptibility measurements, X-band EPR, UV-vis, IR, and M?ssbauer spectroscopies. The following five-coordinate chromophores have been identified: (a) [Fe(III)(L*)2X]n, X = CN-, I- (n = 0) (1ox, 2); X = P(OR)3 (n = 1+) )3ox, 4ox) with St = 1/2, SFe = 3/2; (b) [Fe(II)(L*)2X]n, X = CN-, (n = 1-) (1); X = P(OR)3 (n = 0) (3, 4) with St = SFe = 0; (c) [Fe(II)(L*)(L)X]n <--> [Fe(II)(L)(L*)X]n, X = CN- (n = 2-) (1red); X = P(OR)3 (n = 1-) (3red, 4red) with St = 1/2, SFe = 0 (or 1). Complex 1ox displays spin crossover behavior: St = 1/2 <--> St = 3/2 with intrinsic spin-state change SFe = 3/2 <--> SFe = 5/2. The electronic structures of 1 and 1(ox) have been established by density functional theoretical calculations: [Fe(II)(1L*)2(CN)]1- (SFe = 0, St = 0) and [Fe(III)(1L*)2(CN)]0 (SFe = 3/2, St = 1/2).  相似文献   
7.
8.
The new diphenolato complexes [{Mo(NO){HB(dmpz)3}Cl}2Q] where dmpz = 3,5-dimethylpyrazolyl and Q = OC6H4(C6H4O (n = 1 or 2), OC6H4CR=CRC6H4O (R = H or Et), and OC6H4CH=CHC6H4CH=CHC6H4O have been prepared and their electrochemical properties (cyclic and differential pulse voltammetry) compared with previously reported analogues where Q = OC6H4O, OC6H4EC6H4O (E = SO2, CO and S), OC6H4 (CO)C6H4 C6H4(CO)C6H4O and 1,5- and 2,7-O2C10H6. The electrochemical interaction between the redox centres in the new complexes is very weak, in contrast to that in the 1,4-benzenediolato and naphthalendiolato species. The EPR spectra of the reduced mixed-valence species [{Mo(NO){HB(dmpz)3}Cl}2Q] where Q = 1,3- and 1,4-OC6H4O and OC6H4SC6H4O shows that they are valence-trapped at room temperature, whereas those of the dianions [{Mo(NO){HB(dmpz)3}Cl}2Q]2− where Q = 1,4-OC6H4O, OC6H4EC6H4O (E = CO or S) and OC6H4CH=CHC6H4CH=CHC6H4O shows that the unpaired spins on each molybdenum centre are strongly correlated (J, the spin exchange integral AMo, the metal-hyperfine coupling constant). The electrochemical properties and the comproportionation constants for the reaction [{Mo(NO){HB(dmpz)3} Cl}2Q] + [{Mo(NO){HB(dmpz)3}Cl}O]2]2−2[{Mo(NO) {HB(dmpz)3}Cl}2Q] where Q = diphenolato bridge, are compared with related compounds containing benzenediamido and dianilido bridges.  相似文献   
9.
The templating effect of the tetrafluoroborate ion leads to assembly of four CoII ions and six bridging ligands around this anion to give a tetrahedral complex with a bridging ligand along each edge and the anion trapped in the central cavity (shown below). Surprisingly under identical conditions but with NiII a simpler dinuclear complex forms.  相似文献   
10.
Three tetradentate ligands, in which two bidentate pyrazolyl–pyridine binding sites are connected by an aromatic spacer unit, have been used to prepare adamantoid tetrahedral cages of the form [Co4L6(X)][X]7 (where X is a uninegative, noncoordinating counterion such as perchlorate, tetrafluoroborate, or hexafluorophosphate). In these complexes an approximately tetrahedral array of metal ions occurs, with a bridging ligand spanning each of the six edges of this tetrahedron; each metal ion is accordingly six coordinate and the cages can have either T or C3 symmetry, depending on the ligand. The central cavity of each cage is occupied by an anion. In the cases where the anion is a good fit for the central cavity, it is tightly bound (no exchange in solution with external anions) and acts as a template for assembly of the cage, with a mixture of Co(II) and the bridging ligand in the correct proportions not assembling into the Co4L6 cage until the templating anion is added. With a longer bridging ligand, the central cavity is too large to encapsulate the anion completely, and accordingly the encapsulated anion can exchange freely with external anions; this behavior can be “frozen out” in the NMR spectra at low temperatures. The host–guest chemistry of the cage complexes is therefore strongly dependent on the size of the central cavity. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:567–573, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10101  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号