首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2022年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Mung bean seed coat (MBC) is a by-product of the mung bean processing industry. It contains a large number of phenolic compounds with therapeutic anti-inflammatory, anti-diabetic and antioxidant properties. This research aimed to investigate the optimum conditions for phenolic and flavonoid extraction from MBC by pressurized liquid extraction (PLE). Response surface methodology (RSM) was used to study the effects of temperature (80–160 °C), pressure (1200–1800 psi) and ethanol concentration (5–95%) on total phenolic content (TPC), total flavonoid content (TFC) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity (ABTS). Scale-up extraction was also performed. The optimum conditions for extraction were 160 °C, 1300 psi and 50% ethanol. Under optimum conditions, the TPC was 55.27 ± 1.14 mg gallic acid equivalent (GAE)/g MBC, TFC was 34.04 ± 0.72 mg catechin equivalent (CE)/g MBC and ABTS scavenging activity was 195.05 ± 2.29 mg trolox equivalent (TE)/g MBC. The TFC and ABTS scavenging activity of the extracts obtained at the pilot scale (10 L) was not significantly different from the laboratory scale, while TPC was significantly increased. The freeze-dried MBC extract contained vitexin and isovitexin 130.53 ± 17.89, 21.21 ± 3.22 mg/g extract, respectively. In conclusion, PLE was able to extract phenolics, flavonoids with ABTS scavenging activity from MBC with the prospect for future scale-up for food industry.  相似文献   
2.
The aims of this study were to develop the kinetic model and determine kinetic parameters describing ethanol production from sweet sorghum juice using very high gravity technology in the batch fermentation of Saccharomyces cerevisiae NP01. The obtained experimental data were tested with four different types of model, based on the experimental data, accounting for the substrate limitation, substrate inhibition, product inhibition, and the combination of those three effects, respectively. The optimization technique to find kinetic parameters was non-linear regression using Marquardt method performed through numerical procedure. The chosen model with its kinetic parameters obtained in the batch mode was validated and tested against the other independent experimental data in the small batch-scale and large-scale fermenter, in order to investigate the applicability and scale-up effect of the model, respectively. Then, the obtained model with its parameters was applied in the simulations of the continuous and fed-batch operations to examine the concentration profiles of fermentation components with the variations in operating parameters such as the dilution rate, feed-flow rate, start-up time, and feed concentration. The results indicated that the kinetic model (the substrate limitation with substrate and product inhibition effects) was suitable to describe ethanol fermentation. In the continuous mode, using the dilution rate of 0.01 h?1, the maximum ethanol concentration obtained was, approximately, 90 g/l whereas the simulated results from the fed-batch operation revealed that the maximum ethanol concentration at quasi-steady state condition was, approximately, 96 g/l. The start-up time of 21 h was the fastest time to reach the steady-state and quasi-steady state for both the continuous and fed-batch modes, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号