首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   6篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2014年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
The anti-neuroinflammatory meroterpenoid citreohybridonol was isolated for the first time from a sponge-derived fungus Penicillium atrovenetum. In this study, in addition to isolation and structure featuring, its unambiguous absolute configuration was determined exclusively by single crystal X-ray diffraction. The C-17-keto tautomer was clearly observed in X-ray analysis. The substance crystallises in the monoclinic space group P21 with a = 10.7496(5) Å, b = 14.3286(7) Å, c = 17.4909(8) Å, β = 103.235(2)°, V = 2622.5(2) Å3, Z = 2, Dcalcd = 1.280 g/cm3. The chirality of the asymmetric carbon atoms was as follows: C3 (S), C5 (R), C6 (S), C8 (S), C9 (R), C10 (R), C13 (R), C14 (R).  相似文献   
3.
A new flexible cationic Zn(II)metal organic framework, {[Zn2(BDC)1.5(L)(DMF)]NO3·DMF·solvent}n, MOF 1 , which is a corrugated two-dimensional network, was synthesized by self-assembly of Zn(NO3)2.6H2O with 4,4′-methylenebis(N-(pyridin-2-ylmethylene)aniline as a neutral ligand and terephthalic acid in dimethyl formamide (DMF) as solvent and characterized by X-ray diffraction. Because of the presence of uncoordinated nitrate (NO3) ions in the channels, the compound was employed for ion-exchange applications. We report a detailed study of the host–guest interaction for a cationic metal–organic framework (MOF) that can reversibly capture nitrate. The recrystallization of the MOF was evaluated by monitoring the anion exchange dynamics using a combination of powder X-ray diffraction and Fourier transform infrared spectra with various kinds of foreign anions. This MOF showed fast and highly efficient Cr2O72− and CrO42−, N3, MnO4, and SCN exchange. The trapping capacities of Cr2O72−, CrO42−, N3, MnO4, and SCN were 105,138, 44,104, and 25mg/g at 25°C after 3h, respectively, and there was good recyclability for capturing N3 and SCN. {[Zn2(BDC)1.5(L)(DMF)]NO3}n exhibited anion exchange selectivity of SCN in a solution containing a mixture of 0.025mmol N3, SCN, CrO4−2−, Cr2O72−, and MnO4 for 3h and exhibited anion exchange selectivity for SCN and Cr2O72− in a solution containing a mixture of 0.001mmol N3, SCN, CrO42−, Cr2O72−, and MnO4.  相似文献   
4.
3-Triazolylquinoxalines can be readily synthesized by applying two complementary synthetic protocols starting from heterocyclic π nucleophiles or (hetero)aryl glyoxylic acids in a consecutive four- or five-component reaction. Conceptually, the sequential use of a single cuprous salt for alkynylation and Cu-catalyzed alkyne-azide cycloaddition (CuAAC) in a one-pot fashion sets the stage for activation-alkynylation-cyclocondensation-CuAAC or glyoxylation-alkynylation-cyclocondensation-CuAAC sequences in good yields. The diversity-oriented generation of differently substituted 3-triazolylquinoxalines is an excellent entry to tunable emission solvatorchromic fluorophores with triazole ligation. The electronic structure, corroborated by DFT and TD-DFT calculations, rationalizes the charge transfer character of relevant absorptions and large Stokes shifts as well as the electronic innocence of the triazole substituents.  相似文献   
5.
In this work, the characteristics of gas flow in inlet capillaries are examined. Such inlet capillaries are widely used as a first flow restriction stage in commercial atmospheric pressure ionization mass spectrometers. Contrary to the common assumption, we consider the gas flow in typical glass inlet capillaries with 0.5 to 0.6 mm inner diameters and lengths about 20 cm as transitional or turbulent. The measured volume flow of the choked turbulent gas stream in such capillaries is 0.8 L·min?1 to 1.6 L·min?1 under typical operation conditions, which is in good agreement to theoretically calculated values. Likewise, the change of the volume flow in dependence of the pressure difference along the capillary agrees well with a theoretical model for turbulent conditions as well as with exemplary measurements of the static pressure inside the capillary channel. However, the results for the volume flow of heated glass and metal inlet capillaries are neither in agreement with turbulent nor with laminar models. The velocity profile of the neutral gas in a quartz capillary with an inner diameter similar to commercial inlet capillaries was experimentally determined with spatially resolved ion transfer time measurements. The determined gas velocity profiles do not contradict the turbulent character of the flow. Finally, inducing disturbances of the gas flow by placing obstacles in the capillary channel is found to not change the flow characteristics significantly. In combination the findings suggest that laminar conditions inside inlet capillaries are not a valid primary explanation for the observed high ion transparency of inlet capillaries under common operation conditions.
Graphical Abstract ?
  相似文献   
6.
It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated. Nevertheless, cluster ion chemistry has only been sporadically included in the numerous proposed ionization mechanisms leading to charged target analytes, which are often protonated molecules. This paper series, consisting of two parts, attempts to highlight the role of cluster ion chemistry with regard to the generation of analyte ions. In addition, the impact of the changing reaction matrix and the non-thermal collisions of ions en route from the atmospheric pressure ion source to the high vacuum analyzer region are discussed. This work addresses such issues as extent of protonation versus deuteration, the extent of analyte fragmentation, as well as highly variable ionization efficiencies, among others. In Part 1, the nature of the reagent ion generation is examined, as well as the extent of thermodynamic versus kinetic control of the resulting ion population entering the analyzer region.
Figure
?  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号