首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   2篇
化学   54篇
力学   3篇
数学   6篇
物理学   61篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2018年   4篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   7篇
  2011年   6篇
  2010年   6篇
  2009年   3篇
  2008年   7篇
  2007年   10篇
  2006年   11篇
  2005年   4篇
  2004年   8篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1989年   1篇
  1987年   3篇
  1984年   1篇
  1974年   1篇
  1967年   1篇
  1936年   2篇
  1909年   1篇
排序方式: 共有124条查询结果,搜索用时 125 毫秒
1.
2.
3.
4.
DNA damage by low-energy electrons (LEE) was examined using a novel system in which thin solid films of oligonucleotide tetramers (CGTA and GCAT) were irradiated with monoenergetic electrons (10 eV) under ultrahigh vacuum. The products of irradiation were examined by HPLC. These analyses permitted the quantitation of 16 nonmodified nucleobase, nucleoside, and nucleotide fragments of each tetramer resulting from the cleavage of phosphodiester and N-glycosidic bonds. The distribution of nonmodified products suggests a mechanism of damage involving initial electron attachment to nucleobase moieties, followed by electron transfer to the sugar-phosphate backbone, and subsequent dissociation of the phosphodiester bond. Moreover, virtually all the nonmodified fragments contained a terminal phosphate group at the site of cleavage. These results demonstrate that the phosphodiester bond breaks by a distinct pathway in which the negative charge localizes on the phosphodiester bond giving rise to nonmodified fragments with an intact phosphate group. Conversely, the radical must localize on the sugar moiety to give as yet unidentified modifications. In summary, the reaction of LEE with simple tetramers involved dissociative electron attachment leading to phosphodiester bond cleavage and the formation of nonmodified fragments.  相似文献   
5.
The kinetic bioresolution of 2-nitrocyclohexanol 1 was investigated by screening a range of hydrolases both for enantioselective transesterification and for enantioselective hydrolysis of the corresponding acetate. By appropriate choice of biocatalyst and conditions, both enantiomers of cis and trans 2-nitrocyclohexanol 1 can be accessed in enantiopure form.  相似文献   
6.
We present a study of heat and charge transport in Bi(2+x)Sr(2-x)CuO(6+delta) focused on the size of the low-temperature linear term of the thermal conductivity at optimal-doping level. In the superconducting state, the magnitude of this term implies a d-wave gap with an amplitude close to what has been reported. In the normal state, recovered by the application of a magnetic field, measurement of this term and residual resistivity yields a Lorenz number L=kappa(N)rho(0)/T=1.3+/-0.2L(0). The departure from the value expected by the Wiedemann-Franz law is thus slightly larger than our estimated experimental resolution.  相似文献   
7.
The frequency dependence of the ultrasound signal backscattered by blood in shear flow was studied using a simulation model. The ultrasound backscattered signal was computed with a linear model that considers the characteristics of the ultrasound system and tissue acoustic properties. The tissue scattering properties were related to the position and shape of the red blood cells (RBCs). A 2D microrheological model simulated the RBC dynamics in a Couette shear flow system. This iterative model, described earlier [Biophys. J. 82, 1696-1710 (2002)], integrates the hydrodynamic effect of the flow, as well as adhesive and repulsive forces between RBCs. RBC aggregation was simulated at 40% hematocrit and shear rates of 0.05-2 s(-1). The RBC aggregate sizes ranged, on average, from 3.3 RBCs at 2 s(-1) to 33.5 cells at 0.05 s(-1). The ultrasound backscattered power was studied at frequencies between 5-120 MHz and insonification angles between 0-180 degrees. At frequencies below approximately 30 MHz, the ultrasound backscattered power increased as the shear rate was decreased and the size of the aggregates was raised. A totally different scattering behavior was noted above 30 MHz. Typical spectral slopes of the backscattered power (log-log scale) between 5-25 MHz equaled 3.8, whereas slopes down to 0.6 were measured at 0.05 s(-1), between 40-60 MHz. The ultrasound backscattered power was shown to be angle dependent at low frequencies (5-25 MHz). The anisotropy persisted at high frequencies (>25 MHz) for small aggregates (at 2 s(-1)). In conclusion, this study sheds some light on the blood backscattering behavior with an emphasis on the non-Rayleigh regime. Additional experimental studies may be necessary to validate the simulation results, and to fully understand the relation between the ultrasound backscattered power, level of RBC aggregation, shear rate, frequency, and insonification angle.  相似文献   
8.
The simultaneous ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) and 2‐hydroxyethyl methacrylate (HEMA) polymerization via reversible addition fragmentation chain transfer (RAFT) chemistry and the possible access to graft copolymers with degradable and nondegradable segments is investigated. HEMA and ε‐CL are reacted in the presence of cyanoisopropyl dithiobenzoate (CPDB) and tin(II) 2‐ethylhexanoate (Sn(Oct)2) under typical ROP conditions (T > 100 °C) using toluene as the solvent in order to lead to the graft copolymer PHEMA‐g‐PCL. Graft copolymer formation is evidenced by a combination of size‐exclusion chromatography (SEC) and NMR analyses as well as confirmed by the hydrolysis of the PCL segments of the copolymer. With targeted copolymers containing at least 10% weight of PHEMA and relatively small PHEMA backbones (ca. 5,000–10,000 g mol?1) the copolymer grafting density is higher than 90%. The ratio of free HEMA‐PCL homopolymer produced during the “one‐step” process was found to depend on the HEMA concentration, as well as the half‐life time of the radical initiator used. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3058–3067, 2008  相似文献   
9.
    
Ohne Zusammenfassung  相似文献   
10.
This paper proposes analytical and semianalytical models of the ultrasonic backscattering cross section (BCS) of various geometrical shapes mimicking a red blood cell (RBC) for frequencies varying from 0 to 90 MHz. By assuming the first-order Born approximation and by modeling the shape of a RBC by a realistic biconcave volume, different scattering behaviors were identified for increasing frequencies. For frequencies below 18 MHz, a RBC can be considered a Rayleigh scatterer. For frequencies less than 39 MHz, the general concept of acoustic inertia tensor is introduced to describe the variation of the BCS with the frequency and the incidence direction. For frequencies below 90 MHz, ultrasound backscattering by a RBC is equivalent to backscattering by a cylinder of height 2 microm and diameter 7.8 microm. These results lay the basis of ultrasonic characterization of RBC aggregation by proposing a method that distinguishes the contribution of the individual RBC acoustical characteristics from collective effects, on the global blood backscattering coefficient. A new method of data reduction that models the frequency dependence of the ultrasonic BCS of micron-sized weak scatterers is also proposed. Applications of this method are in tissue characterization as well as in hematology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号