首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   11篇
化学   96篇
晶体学   3篇
力学   1篇
数学   5篇
物理学   17篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   4篇
  2015年   2篇
  2014年   8篇
  2013年   12篇
  2012年   10篇
  2011年   10篇
  2009年   1篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   6篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1995年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1933年   1篇
排序方式: 共有122条查询结果,搜索用时 0 毫秒
1.
The gas-phase molecular structures of a series of halogen-substituted disilanes [X3SiSiMe3 (X = H, F, Cl and Br)], 1,1,1-trimethyldisilane (H3SiSiMe3), 1,1,1-trifluoro-2,2,2-trimethyldisilane (F3SiSiMe3), 1,1,1-trichloro-2,2,2-trimethyldisilane (Cl3SiSiMe3) and 1,1,1-tribromo-2,2,2-trimethyldisilane (Br3SiSiMe3), have been determined in the gas phase by electron diffraction. Ab initio calculations at the HF and MP2 level were used to support the experimental investigation using the SARACEN method. All of the investigated structures were determined to adopt a staggered structure with C 3v symmetry. The effect of substitution on the Si–Si bond and the Si–Si–X bond angle was investigated and these results were compared to results obtained from a recent study of halogen-substituted disilanes [X3SiSiXMe2 (X = F, Cl, Br and I)] to consider the effect of the methyl groups on the substituted disilanes.  相似文献   
2.
We introduce the visible‐light photocatalytic H2 evolution reaction as catalyzed by a cobaloxime/carbon nitride (C3N4) noble‐metal‐free hybrid photosystem by using a continuous‐flow sampling reaction system. The photocatalytic H2 evolution rate is highly dependent on the structure of C3N4, in which porous C3N4 shows the best activity compared with bulk C3N4 (lamellar) and C3N4 nanosheets. When using porous C3N4, the system is neither affected by the solution pH, nor the C3N4 concentration, nor the structure of the cobaloxime complex.  相似文献   
3.
To be able to correlate the catalytic properties of nanoparticles with their structure, detailed knowledge about their make‐up on the atomic level is required. Herein, we demonstrate how atom‐probe tomography (APT) can be used to quantitatively determine the three‐dimensional distribution of atoms within a Au@Ag nanoparticle with near‐atomic resolution. We reveal that the elements are not evenly distributed across the surface and that this distribution is related to the surface morphology and residues from the particle synthesis.  相似文献   
4.
5.
Neurotoxicity is a serious health problem of patients chronically exposed to arsenic. There is no specific treatment of this problem. Oxidative stress has been implicated in the pathological process of neurotoxicity. Polyphenolics have proven antioxidant activity, thereby offering protection against oxidative stress. In this study, we have isolated the polyphenolics from Acacia nilotica and investigated its effect against arsenic-induced neurotoxicity and oxidative stress in mice. Acacia nilotica polyphenolics prepared from column chromatography of the crude methanol extract using diaion resin contained a phenolic content of 452.185 ± 7.879 mg gallic acid equivalent/gm of sample and flavonoid content of 200.075 ± 0.755 mg catechin equivalent/gm of sample. The polyphenolics exhibited potent antioxidant activity with respect to free radical scavenging ability, total antioxidant activity and inhibition of lipid peroxidation. Administration of arsenic in mice showed a reduction of acetylcholinesterase activity in the brain which was counteracted by Acacia nilotica polyphenolics. Similarly, elevation of lipid peroxidation and depletion of glutathione in the brain of mice was effectively restored to normal level by Acacia nilotica polyphenolics. Gallic acid methyl ester, catechin and catechin-7-gallate were identified in the polyphenolics as the major active compounds. These results suggest that Acacia nilotica polyphenolics due to its strong antioxidant potential might be effective in the management of arsenic induced neurotoxicity.  相似文献   
6.
7.
Large enhancements have been observed in the sub-barrier fusion cross sections for Ti+Ni systems in our previous studies. Coupled channel calculations incorporating couplings to 2+ and 3 states failed to explain these enhancements completely. A possibilty of transfer channels contributing to the residual enhancements had been suggested. In order to investigate the role of relevant transfer channels, measurements of one- and two-nucleon transfer were carried out for 46,48Ti+61Ni systems. The present paper gives the results of these studies.  相似文献   
8.
The synthesis of ORganically MOdified SILica (ORMOSIL) particles has been carried out using both the hydrolytic and non-hydrolytic sol-gel routes. The hybrid (nano)composites are organically modified with an alkyl or aryl group covalently bonded to silicon. Hybrids have been synthesised in an aqueous sol-gel process by a modified Stöber route, producing spherical nanoparticles with diameters in the range 50–300 nm. The size of the particles can be controlled by control of certain reaction parameters. Smaller ormosil nanoparticles can be synthesised by a base-catalysed emulsion polymerisation route, by varying the type and concentration of surfactant and precursor feed rate. In this case, particles in the size range 3.5–10 nm can be obtained. Hybrids have been synthesised from hyperbranched polyesters by encapsulation in a silica matrix using the hydrolytic sol-gel route. Optimisation of the reaction conditions allows the hybrids to be produced as isolated sub-micron spherical particles. Ormosil particles have also been synthesised using the non-hydrolytic sol-gel route, which may lead to products of different morphologies because of the different polarity of the reaction medium. Different reaction conditions were studied in order to optimise the size and shape of the particles, including choice of solvent, use of surfactants and addition of polystyrene. Dimethylsulfoxide acts as a novel oxygen donor for the catalyst-free formation of colourless silsesquioxanes.  相似文献   
9.
The transition path sampling (TPS) method is a powerful approach to study chemical reactions or transitional properties on complex potential energy landscapes. One of the main advantages of the method over potential of mean force methods is that reaction rates can be directly accessed without knowledge of the exact reaction coordinate. We have investigated the complementary nature of these two differing approaches, comparing transition path sampling with the weighted histogram analysis method to study a conformational change in a small model system. In this case study, the transition paths for a transition between two rotational conformers of a model disaccharide molecule, methyl beta-D-maltoside, were compared with a free energy surface constrained by the two commonly used glycosidic (phi,psi) torsional angles. The TPS method revealed a reaction channel that was not apparent from the potential of mean force method, and the suitability of phi and psi as reaction coordinates to describe the isomerization in vacuo was confirmed by examination of the transition path ensemble. Using both transition state theory and transition path sampling methods, the transition rate was estimated. We have estimated a characteristic time between transitions of approximately 160 ns for this rare isomerization event between the two conformations of the carbohydrate. We conclude that transition path sampling can extract subtle information about the dynamics not apparent from the potential of mean force method. However, in calculating the reaction rate, the transition path sampling method required 27.5 times the computational effort than was needed by the potential of mean force method.  相似文献   
10.
Growth factors play a critical role in regulating processes involved in cellular differentiation and tissue regeneration, and are therefore considered essential elements in many tissue engineering strategies. The covalent immobilization of growth factors to biomaterial matrices addresses many of the challenges associated with delivering freely-diffusible growth factors and has thus emerged as a promising method of achieving localized and sustained growth factor delivery. This Feature Article discusses methods that have been used to immobilize growth factors to substrates, followed by an overview of several tissue repair and regeneration applications in which immobilized growth factors have been used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号