首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   1篇
化学   33篇
力学   1篇
数学   2篇
物理学   19篇
  2021年   2篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1976年   1篇
排序方式: 共有55条查询结果,搜索用时 0 毫秒
1.
2.
3.
Molecular dynamics simulations have been used to study the spontaneous aggregation of a concentrated solution of dipalmitoylphosphatidylcholine (DPPC) molecules in water into a small vesicle. The molecules were represented in atomistic detail. Starting from a DPPC solution in water, an oblong vesicle with a long axis of 15 nm and short axes of 10 nm was formed spontaneously. After 90 ns of simulation, the vesicle contained a number of water pores. Water pores were shown to facilitate exchange of lipids between inner and outer leaflets. Lipid tails were shown to be less ordered in the inner leaflet of the vesicle, as compared to those in the outer leaflet of the vesicle and an equilibrated lamellar bilayer.  相似文献   
4.
We present a dual-resolution model of a deoxyribonucleic acid (DNA) molecule in a bathing solution, where we concurrently couple atomistic bundled water and ions with the coarse-grained MARTINI model of the solvent. We use our fine-grained salt solution model as a solvent in the inner shell surrounding the DNA molecule, whereas the solvent in the outer shell is modeled by the coarse-grained model. The solvent entities can exchange between the two domains and adapt their resolution accordingly. We critically asses the performance of our multiscale model in adaptive resolution simulations of an infinitely long DNA molecule, focusing on the structural characteristics of the solvent around DNA. Our analysis shows that the adaptive resolution scheme does not produce any noticeable artifacts in comparison to a reference system simulated in full detail. The effect of using a bundled-SPC model, required for multiscaling, compared to the standard free SPC model is also evaluated. Our multiscale approach opens the way for large scale applications of DNA and other biomolecules which require a large solvent reservoir to avoid boundary effects.  相似文献   
5.
6.
Using a coarse-grained molecular model we study the spatial distribution of lipid domains on a 20-nm-sized vesicle. The lipid mixture laterally phase separates into a raftlike, liquid-ordered (l(o)) phase and a liquid-disordered phase. As we uniaxially compress the mixed vesicle keeping the enclosed volume constant, we impart tension onto the membrane. The vesicle adopts a barrel shape, which is composed of two flat contact zones and a curved edge. The l(o) domain, which exhibits a higher bending rigidity, segregates to the highly curved edge. This inverted domain sorting switches to normal domain sorting, where the l(o) domain prefers the flat contact zone, when we release the contents of the vesicle. We rationalize this domain sorting by a pronounced reduction of the bending rigidity and area compressibility of the l(o) phase upon bending.  相似文献   
7.
With today's available computer power, free energy calculations from equilibrium molecular dynamics simulations "via counting" become feasible for an increasing number of reactions. An example is the dimerization reaction of transmembrane alpha-helices. If an extended simulation of the two helices covers sufficiently many dimerization and dissociation events, their binding free energy is readily derived from the fraction of time during which the two helices are observed in dimeric form. Exactly how the correct value for the free energy is to be calculated, however, is unclear, and indeed several different and contradictory approaches have been used. In particular, results obtained via Boltzmann statistics differ from those determined via the law of mass action. Here, we develop a theory that resolves this discrepancy. We show that for simulation systems containing two molecules, the dimerization free energy is given by a formula of the form ΔG ∝ ln(P(1) /P(0) ). Our theory is also applicable to high concentrations that typically have to be used in molecular dynamics simulations to keep the simulation system small, where the textbook dilute approximations fail. It also covers simulations with an arbitrary number of monomers and dimers and provides rigorous error estimates. Comparison with test simulations of a simple Lennard Jones system with various particle numbers as well as with reference free energy values obtained from radial distribution functions show full agreement for both binding free energies and dimerization statistics.  相似文献   
8.

Background  

Microglia provide continuous immune surveillance of the CNS and upon activation rapidly change phenotype to express receptors that respond to chemoattractants during CNS damage or infection. These activated microglia undergo directed migration towards affected tissue. Importantly, the molecular species of chemoattractant encountered determines if microglia respond with pro- or anti-inflammatory behaviour, yet the signaling molecules that trigger migration remain poorly understood. The endogenous cannabinoid system regulates microglial migration via CB2 receptors and an as yet unidentified GPCR termed the 'abnormal cannabidiol' (Abn-CBD) receptor. Abn-CBD is a synthetic isomer of the phytocannabinoid cannabidiol (CBD) and is inactive at CB1 or CB2 receptors, but functions as a selective agonist at this Gi/o-coupled GPCR. N-arachidonoyl glycine (NAGly) is an endogenous metabolite of the endocannabinoid anandamide and acts as an efficacious agonist at GPR18. Here, we investigate the relationship between NAGly, Abn-CBD, the unidentified 'Abn-CBD' receptor, GPR18, and BV-2 microglial migration.  相似文献   
9.
Electrophoresis is widely used to determine the electrostatic potential of colloidal particles. Oil droplets in pure water show negative or positive electrophoretic mobilities depending on the pH. This is commonly attributed to the adsorption of hydroxyl or hydronium ions, resulting in a negative or positive surface charge, respectively. This explanation, however, is not in agreement with the difference in isoelectric point and point of zero charge observed in experiment. Here we present molecular dynamics simulations of oil droplets in water in the presence of an external electric field but in the absence of any ions. The simulations reproduce the negative sign and the order of magnitude of the oil droplet mobilities at the point of zero charge in experiment. The electrostatic potential in the oil with respect to the water phase, induced by anisotropic dipole orientation in the interface, is positive. Our results suggest that electrophoretic mobility does not always reflect the net charge or electrostatic potential of a suspended liquid droplet and, thus, the interpretation of electrophoresis in terms of purely continuum effects may need to be reevaluated.  相似文献   
10.
Molecular dynamics simulations of the magainin MG-H2 peptide interacting with a model phospholipid membrane have been used to investigate the mechanism by which antimicrobial peptides act. Multiple copies of the peptide were randomly placed in solution close to the membrane. The peptide readily bound to the membrane, and above a certain concentration, the peptide was observed to cooperatively induce the formation of a nanometer-sized, toroidally shaped pore in the bilayer. In sharp contrast with the commonly accepted model of a toroidal pore, only one peptide was typically found near the center of the pore. The remaining peptides lay close to the edge of the pore, maintaining a predominantly parallel orientation with respect to the membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号