首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
化学   9篇
物理学   2篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2011年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有11条查询结果,搜索用时 93 毫秒
1.
A microwave distillation method was optimized for the extraction and isolation of cannabis essential oil from fresh and dried hemp inflorescences. The developed method enabled us to obtain a distilled product rich in terpenes and terpenoid compounds, responsible of the typical and unique smell of the cannabis plant. The distillate from different hemp cultivars, including Kompolti, Futura 75, Carmagnola, Felina 32 and Finola were characterized by using a gas chromatograph equipped with both mass spectrometer and flame ionization detectors. In a single chromatographic run, the identity and absolute amounts of distilled compounds were determined. Peak assignment was established using a reliable approach based on the usage of two identification parameters, named reverse match, and linear retention index filter. Absolute quantification (mg g−1) of the analytes was performed using an internal standard method applying the flame ionization detector (FID) response factors according to each chemical family. An enantio-GC-MS method was also developed in order to evaluate the enantiomeric distribution of chiral compounds, an analytical approach commonly utilized for establishing the authenticity of suspicious samples.  相似文献   
2.
The present research is based on the use of a recently developed comprehensive two‐dimensional gas chromatography thermal modulator, which is defined as solid‐state modulator. The transfer device was installed on top of a single gas chromatography oven, while benchtop low‐resolution time‐of‐flight mass spectrometry was used to monitor the compounds exiting the second analytical column. The solid‐state modulator was first described by Luong et al. in 2016, and it is a moving modulator that does not require heating and cooling gases to generate comprehensive two‐dimensional gas chromatography data. The accumulation and remobilization steps occur on a trapping capillary, this being subjected to thermoelectric cooling and micathermic heating. In this study, the effects of the gas linear velocity on the modulation performance were evaluated by using two different uncoated trapping capillaries, viz., 0.8 m × 0.25 mm id and 0.8 m × 0.20 mm id. Solid‐state modulator applications were carried out on a standard solution containing n‐alkanes (C9, C10, C12), and on a sample of diesel fuel. The results indicated that the type of trapping capillary and gas velocity have a profound effect on modulation efficiency.  相似文献   
3.
Phthalates are a group of synthetic compounds mainly used as plasticizers, which have been classified as endocrine-disrupting chemicals and potential human-cancer causing agents. They can be found in high amounts in foods, deriving mainly from plastic packaging. The analytical determination of these compounds is very challenging since they are ubiquitous. Therefore, minimization of sample manipulation is highly desirable.  相似文献   
4.
The goal of this study was to develop a method for the determination of nine phthalic acid esters in extra virgin olive oils using low-pressure gas chromatography-triple-quadrupole mass spectrometry. Sample preparation was simple, environmental friendly, and rapid inasmuch that it involved only dilution (< 1 mL of hexane). The low-pressure gas chromatography analyses were performed by using a 5 m wide-bore column. The limit of quantification for the phthalates ranged from 0.06 to 1.14 mg kg−1. Both intra- and interday precisions were measured, with coefficient of variation values ranging from 0.2% to 11.7%. The trueness of the method was measured by evaluating accuracy at the initial stage of the work and after 2 months, with values ranging between −8.7% and 12.1%. Moreover, blind accuracy was comprised between −11.6% and 14.2%. The method involves the use of simplified instrumentation and reduced analysis times (nearly two times faster) compared to a previously published comprehensive two-dimensional gas chromatography-triple-quadrupole mass spectrometry method, leading to a reduction of energy and helium consumption. The approaches were compared in analytical terms and for the environmental impact. In total, 23 olive oil samples were analyzed, with at least one phthalate detected in all but one sample.  相似文献   
5.
The present paper describes an investigation directed toward the development of a rapid heart-cutting LC-GC method for the analysis of mineral oil saturated hydrocarbons contained in vegetable oils. The automated LC-GC experiments were carried out by using a system equipped with a syringe-type interface, capable of both heart-cutting and comprehensive (LC × GC) two-dimensional analysis. The first dimension separation was achieved on a 100 mm × 3 mm ID × 5 μm d(p) silica column, operated under isocratic conditions (hexane). A single 30-s cut, corresponding to a 175 μL volume, was transferred to a programmed temperature vaporizer. After the large volume injection, the target analytes were separated in a rapid manner (~9 min) using a 15 m × 0.1mm ID × 0.1 μm micro-bore GC capillary. The overall LC-GC run time enables the analysis of ca. 4 samples/hour. Quantification was performed by using external calibration, in the 1-200 mg/kg range. The method was validated in terms of linearity, precision, limits of detection and quantification, and accuracy. A series of commercial samples were subjected to analysis. Various degrees of contamination were found in all samples, in the 7.6-180.6 mg/kg range.  相似文献   
6.
7.
8.
9.
The present contribution is focused on the evaluation of a high‐speed triple quadrupole mass spectrometer, carried out under moderately fast GC conditions (analysis time: 16.6 min). The mass spectrometric instrument can be operated under high‐speed GC conditions, in both full‐scan (maximum scan speed: 20 000 amu/s) and multiple reaction monitoring (MRM) modes (minimum dwell time: 0.01 s). Additionally, the mass spectrometric system can generate full scan and MRM information, simultaneously and rapidly. A headspace solid‐phase microextraction with fast GC coupled to triple quadrupole MS approach was developed for the: (i) qualitative untargeted analysis of brewed tea volatiles, and (ii) MRM qualitative and quantitative analysis of targeted volatiles (also in brewed tea), namely 30 phytosanitary contaminants. The performance of the triple quadrupole instrument was satisfactory both for identification and quantification purposes. Furthermore, the method sensitivity was more than sufficient for the requirements of current legislation. Method validation, related to the MRM analysis, was performed considering: precision of quantification data (maximum coefficient of variation value: 12.0%) and quantification/qualification ion ratios (maximum coefficient of variation value: 14.4%), along with limits of detection (4 parts per trillion–5 parts per billion range) and quantification (14 parts per trillion–16 parts per billion range).  相似文献   
10.
This investigation focused on direct comparison of two popular multidimensional liquid–gas chromatography (LC–GC) systems, the Y-interface (retention gap approach) and the syringe-based interface (programmed temperature vaporizer approach). Such transfer devices are structurally very different, and could potentially have a substantial effect on the outcome of a specific application. In this work the application was a topic of much current interest, determination of mineral oil saturated hydrocarbon (MOSH) contamination of a series of food products (rice, pasta, icing sugar, olive oil); the final results were then compared. The two LC–GC methods developed were validated for linearity over the calibration range, analyte discrimination, precision, accuracy, and limits of detection and quantification. No significant differences were found between the two approaches.
Figure
Direct comparison between the Y/LC-GC and the PTV/LC-GC results, on two rice samples  相似文献   
1 [2] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号