首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
化学   20篇
数学   1篇
物理学   4篇
  2022年   1篇
  2021年   2篇
  2016年   2篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
Geminal bisphosphonates (BPs), used in the clinic for the treatment of hypercalcaemia and skeletal metastases, have been also exploited for promoting the specific accumulation of platinum antitumor drugs in bone tissue. In this work, the platinum dinuclear complex [{Pt(en)}(2)(μ-AHBP-H(2))](+) (1) (the carbon atom bridging the two phosphorous atoms carrying a 2-ammonioethyl and a hydroxyl group, AHBP-H(2)) has been used as scaffold for the synthesis of a Pt(II) trinuclear complex, [{Pt(en)}(3)(μ-AHBP)](+) (2), and a Pt(IV) adamantane-shaped dinuclear complex featuring an oxo-bridge, [{Pt(IV)(en)Cl}(2)(μ-O)(μ-AHBP-H(2))](+) (3) (X-ray structure). Compound 2 undergoes a reversible, pH dependent, rearrangement with a neat switch point around pH = 5.4. Compound 3 undergoes a one-step electrochemical reduction at E(pc) = -0.84 V affording compound 1. Such a potential is far lower than that of glutathione (-0.24 V), nevertheless compound 3 can undergo chemical reduction to 1 by GSH, most probably through a different (inner-sphere) mechanism. In vitro cytotoxicity of the new compounds, tested against murine glioma (C6) and human cervix (HeLa) and hepatoma (HepG2) cell lines, has shown that, while the Pt(IV) dimer 3 is inactive up to a concentration of 50 μM, the two Pt(II) polynuclear compounds 1 and 2 have a cytotoxicity comparable to that of cisplatin with the trinuclear complex 2 generally more active than the dinuclear complex 1.  相似文献   
2.
The reaction of the [Ni6(CO)12]2− dianion with [Rh(COD)Cl]2 (COD = cyclooctadiene) in acetone affords a mixture of bimetallic Ni–Rh clusters, mainly consisting of the new [Ni7Rh3(CO)18]3− and [Ni8Rh(CO)18]3− trianions. A study of the reactivity of [Ni7Rh3(CO)18]3− led to isolation of the new [Ni3Rh3(CO)13]3− and [NiRh8(CO)19]2− anions. All these new bimetallic Ni–Rh carbonyl clusters have been isolated in the solid state as tetrasubstituted ammonium salts and have been characterised by elemental analysis, X-ray diffraction studies, ESI-MS and electrochemistry. The unit cell of the [NEt4]3[Ni7Rh3(CO)18] salt contains two orientationally-disordered ν2-tetrahedral [Ni7Rh3(CO)18]3− trianions with occupancy factors of 0.75 and 0.25. Besides, their inner Ni3Rh3 octahedral moieties show two cis sites purely occupied by Rh atoms, two trans sites purely occupied by Ni atoms and the remaining two cis sites are disordered Ni and Rh sites with respective occupancy fraction of 0.5. At difference from the parent [Ni7Rh3(CO)18]3−, the octahedral [Ni3Rh3(CO)13]3− displays an ordered distribution of Ni and Rh atoms in two staggered triangles. The [NiRh8(CO)19]2− dianion adopts an isomeric metal frame with respect to that of the [PtRh8(CO)19]2− congener. As a fallout of this work, new high-yield synthesis of the known [Ni6Rh3(CO)17]3− and [Ni6Rh5(CO)21]3−, as well as other currently-investigated bimetallic Ni–Rh clusters have been obtained.  相似文献   
3.
Poly(N-vinyl-2-pyrrolidone) (PVP) hydrogels have been synthesised from the aqueous solutions of the same linear polymer by two different radiation sources: electron beams and UV rays. The present investigation couples conventional hydrogel characterisation techniques with the study of the partition equilibria, fluorescence behaviour and release of two different molecular probes, 1-anilino-8-naphthalene sulphonate (ANS) and Thioflavin T (ThT). The two probes have comparable molecular weight and different structural and optical properties. The ‘chemical’ networks produced upon irradiation in different experimental conditions presented quite distinctive mechanical spectra, yielded to different porous solids upon freeze-drying and showed specific rehydration ratios when ‘equilibrated’ in water. More interestingly, they offered ‘hydrophobic pockets’ to host the ANS molecules in a way that the probe is completely occluded from water, making it fluoresce. Conversely, the generated PVP networks did not show any specific affinity towards the hydrophilic ThT that was only barely untaken.  相似文献   
4.
5.
New Mo(II) complexes with 2,2′-dipyridylamine (L1), [Mo(CH3CN)(η3-C3H5)(CO)2(L1)]OTf (C1a) and [{MoBr(η3-C3H5)(CO)2(L1)}2(4,4′-bipy)](PF6)2 (C1b), with {[bis(2-pyridyl)amino]carbonyl}ferrocene (L2), [MoBr(η3-C3H5)(CO)2(L2)] (C2), and with the new ligand N,N-bis(ferrocenecarbonyl)-2-aminopyridine (L3), [MoBr(η3-C3H5)(CO)2(L3)] (C3), were prepared and characterized by FTIR and 1H and 13C NMR spectroscopy. C1a, C1b, L3, and C2 were also structurally characterized by single crystal X-ray diffraction. The Mo(II) coordination sphere in all complexes features the facial arrangement of allyl and carbonyl ligands, with the axial isomer present in C1a and C2, and the equatorial in the binuclear C1b. In both C1a and C1b complexes, the L1 ligand is bonded to Mo(II) through the nitrogen atoms and the NH group is involved in hydrogen bonds. The X-ray single crystal structure of C2 shows that L2 is coordinated in a κ2-N,N-bidentate chelating fashion. Complex C3 was characterized as [MoBr(η3-C3H5)(CO)2(L3)] with L3 acting as a κ2-N,O-bidentate ligand, based on the spectroscopic data, complemented by DFT calculations.The electrochemical behavior of the monoferrocenyl and diferrocenyl ligands L2 and L3 has been studied together with that of their Mo(II) complexes C2 and C3. As much as possible, the nature of the different redox changes has been confirmed by spectrophotometric measurements. The nature of the frontier orbitals, namely the localization of the HOMO in Mo for both in C2 and C3, was determined by DFT studies.  相似文献   
6.
Six metal carbido-carbonyl clusters have been isolated and recognized as members of a multivalent family based on the dioctahedral Rh(10)(C)(2) frame, with variable numbers of CO ligands, AuPPh(3) moieties, and anionic charge: [Rh(10)(C)(2)(CO)(x)(AuPPh(3))(y)](n-) (x = 18, 20; y = 4, 5, 6; n = 0, 1, 2). Anions [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)](-) ([2](-)) and [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)](2-) ([2](2-)) have been obtained by the reduction of [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)] (2) under N(2), while [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(5)](-) ([3](-)) was obtained from [Rh(10)(C)(2)(CO)(20)(AuPPh(3))(4)] (1) by reduction under a CO atmosphere. [3](-) can be better obtained by the addition of AuPPh(3)Cl to [2](2-). [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(6)] (4) is obtained from [3](-) and 2 as well by the reduction and subsequent addition of AuPPh(3)Cl. The molecular structures of [2](2-) ([NBu(4)](+) salt), [3](-) ([NMe(4)](+) salt), and 4 have been determined by single-crystal X-ray diffraction. The redox activities of complexes 1, 2 and [3](-) have been investigated by electrochemical and electron paramagnetic resonance (EPR) techniques. The data from EPR spectroscopy have been accounted for by theoretical calculations.  相似文献   
7.
For the first time, a quick method to discriminate between undamaged, well‐maintained katanas and worn artificially restored blades is presented. The peculiar hardening process that a Japanese katana undergoes results in creation of a tempered martensitic phase near the blade edge. After the temper, traditional polishing with stones is performed, which gives the sword its final look: the hardened zone exhibits matte finish, and it is separated from the shinier zone by the hamon line, which is the most characteristic feature of a katana. If the sword is worn, the martensitic phase disappears and so does the hamon line, the sword losing most of its commercial value. However, an acid bath can simulate the matte texture of an undamaged martensitic structure, making it really difficult to recognize valuable blades from worn ones. So far, no analytical approach helping in this task was available. The method we present is based on the hypothesis that traditional polishing leaves a very tiny amount of stone dust on the blade, whereas the acid bath rinses it away. The presence on the blade surface of Si (the major component of the stones used for polishing) when the hamon line is clearly visible could thus be a reasonable marker indicating that the blade is maintaining its original martensitic structure and thus is in a good conservation state. For the Si detection, X‐ray fluorescence technique was chosen, which ensures non‐destructivity, high sensitivity, and short measurement time with a portable instrument. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
8.
9.
Quantitative micro-PIXE and electron microprobe analyses, as well as micro-PIXE compositional mapping of trace elements were performed on monazite [(Ce, La, Nd, Th)PO4] inclusions in pyrope megablasts from Dora Maira Massif, Western Italian Alps for petrological and geochronological purposes. Monazite was studied by SEM-BSE imaging and by X-ray qualitative compositional maps of major elements; further WDS electron microprobe analyses were carried out in areas showing different BSE intensity in order to quantify chemical zoning. Finally, micro-PIXE compositional maps and quantitative analyses were performed on selected spots and areas. EPMA data indicate that the Dora Maira monazite is Ce- and Th-rich with homogeneous concentrations of LREE, but with a significantly heterogeneous distribution of Th, as well as of Y, Sr, U and Pb as displayed by micro-PIXE compositional mapping. HREE mostly occur in concentrations below the detection limit for standard quantitative EPMA. Th–U–Pb zoning suggests two monazite growth events, dated at 35 (±7 Ma) and 60 Ma (±10 Ma), respectively. While the younger age of 35 Ma found in high-Th monazite areas corresponds to the thermal and baric peak of the UHP metamorphism in the Dora Maira Massif, in agreement with previous literature data, the older ages of 60 Ma found in low-Th areas have to be confirmed by U–Th–Pb isotopic data.  相似文献   
10.
Reaction of the [Ni(9)C(CO)(17)](2-) dianion with CdCl(2)2.5 H(2)O in THF affords the novel bimetallic Ni--Cd carbide carbonyl clusters [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-) (n=3-6), which undergo several protonation-deprotonation equilibria in solution depending on the basicity of the solvent or upon addition of acids or bases. Although the occurrence in solution of these equilibria complicates the pertinent electrochemical studies on their electron-transfer activity, they clearly indicate that the clusters [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-) (n=3-6), as well as the structurally related [H(6-n)Ni(34)C(4)(CO)(38)](n-) (n=4-6), undergo reversible or partially reversible redox processes and provide circumstantial and unambiguous evidence for the presence of hydrides for n=3, 4 and 5. Three of the [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-) anions (n=4-6) have been structurally characterized in their [NMe(3)(CH(2)Ph)](4)[H(2)Ni(30)C(4)(CO)(34)(CdCl)(2)]2 COMe(2), [NEt(4)](5)[HNi(30)C(4)(CO)(34)(CdCl)(2)]2 MeCN and [NMe(4)](6)[Ni(30)C(4)(CO)(34)(CdCl)(2)]6 MeCN salts, respectively. All three anions display almost identical geometries and bonding parameters, probably because charge effects are minimized by delocalization over such a large metal carbonyl anion. Moreover, the Ni(30)C(4) core in these Ni-Cd carbide clusters is identical within experimental error to those present in the [HNi(34)C(4)(CO)(38)](5-) and [Ni(35)C(4)(CO)(39)](6-) species, suggesting that the stepwise assembly of their nickel carbide cores may represent a general pathway of growth of nickel polycarbide clusters. The fact that the [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-)(n=4-6) anions display two valence electrons more than the structurally related [H(6-n)Ni(34)C(4)(CO)(38)](n-) (n=4-6) species has been rationalized by extended Hückel molecular orbital (EHMO) analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号