首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
化学   44篇
数学   3篇
物理学   13篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   3篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1967年   1篇
排序方式: 共有60条查询结果,搜索用时 31 毫秒
1.
New Schiff bases of 2,4‐dihydroxybenzaldehyde with siloxane‐α,ω‐diamines having different numbers of siloxane units in the chain have been synthesized and characterized by spectroscopy, elemental and thermal analyses. These azomethines were found to form complexes readily with copper(II), nickel(II), cobalt(II), cadmium(II) and zinc(II). From IR and UV–Vis studies, the phenolic oxygen and imine nitrogen of the ligand were found to be the coordination sites. Thermogravimetric analysis (TGA) data indicate the chelates to be more stable than the corresponding ligands. The melting points increase with shortening of the siloxane segment from azomethine, as well as the result of complexation. The chelates obtained were covalently inserted in polymeric linear structures by polycondensation through the OH‐difunctionalized ligand with 1,3‐bis(carboxypropyl)tetramethyldisiloxane. Direct polycondensation, assisted either by acetic anhydride or N,N′‐dicyclohexylcarbodiimide as dehydrating agent and the complex 4‐(dimethylamino)pyridinium 4‐toluenesulfonate as catalyst, was used for the synthesis of these compound types. The structures of the polymers obtained were confirmed by IR, UV and 1H NMR. Characterization was undertaken by TGA, solubility tests and viscosity measurements. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. We investigated the use of time‐resolved, laser‐induced fluorescence spectroscopy for demarcation of primary brain tumors by studying the time‐resolved spectra of gliomas. The fluorescence of human brain samples (glioblastoma multiforme, cortex and white matter: six patients, 23 sites) was induced ex vivo with a pulsed nitrogen laser (337 nm, 3 ns). The time‐resolved spectra were detected in a 360–550 nm wavelength range using a fast digitizer and gated detection. Parameters derived from both the spectral‐ (intensities from narrow spectral bands) and the time domain (average lifetime) measured at 390 and 460 nm were used for tissue characterization. We determined that high‐grade gliomas are characterized by fluorescence lifetimes that varied with the emission wavelength (>3 ns at 390 nm, <1 ns at 460 nm) and their emission is overall longer than that of normal brain tissue. Our study demonstrates that the use of fluorescence lifetime not only improves the specificity of fluorescence measurements but also allows a more robust evaluation of data collected from brain tissue. Combined information from both the spectraland the time domain can enhance the ability of fluorescencebased techniques to diagnose and detect brain tumor margins intraoperatively.  相似文献   
3.
The affinity of geldanamycin (GA) for binding to heat shock protein 90 (HSP90) is 50- to 100-fold weaker than is the affinity of the structurally distinct natural product radicicol. X-ray crystallography shows that although radicicol maintains its free conformation when bound to HSP90, the conformation of GA is dramatically altered from an extended conformation with a trans amide bond to a kinked shape in which the amide group in the ansa ring has the cis configuration. We have performed ab initio quantum chemical calculations to demonstrate that the trans-cis isomeriztion of GA in solution is both kinetically and thermodynamically unfavorable. Thus, we propose that HSP90 catalyzes the isomerization of GA. We identify Ser113, a conserved residue outside the ATP binding pocket, as essential for the isomerization of GA. In support of this model, we show that radicicol binds equally well to both wild-type HSP90 and the Ser113 mutant, whereas the binding of GA to the Ser113 mutant is decreased significantly from its binding to wild-type HSP90. Based on this finding, a mechanism of keto-enol tautomerization of GA catalyzed by HSP90 is proposed. The added requirement of isomerization prior to tight binding may explain the enhanced binding affinity of GA for HSP90 in a cell extract versus in a purified form.  相似文献   
4.
The temperature dependence of the electrical conductivity and the Seebeck coefficient of some new complex polymeric structures containing metal chelate sequences alternating with silane units were studied. The measurements were performed using thin films deposited from solution. The investigated polymers have interesting semiconducting characteristics. The correlations between these characteristics and the molecular structure of the respective polymers are discussed.  相似文献   
5.

Background  

LAG-3 (CD223) is a natural high affinity ligand for MHC class II. The soluble form (sLAG-3) induces maturation of monocyte-derived dendritic cells in vitro and is used as a potent Th1-like immune enhancer with many antigens in animal models. To extend this observation to human, a proof of concept study was conducted with a clinical-grade sLAG-3, termed IMP321, coinjected with alum-non-absorbed recombinant hepatitis B surface antigen.  相似文献   
6.
Evidences of nanochannel formation based on Kirkendall effect have been previously reported for oxide nanowires covered with a thin alumina shell layer. Here we will investigate the nanochannel formation on an in situ pulsed laser deposition (PLD) fabricated structure of iron oxide shell layer over ZnO and MgO nanowire core and will compare with the alumina shell layer results. In all (four) cases a chemical reaction takes place on the interface producing a spinel buffer layer. Nanochannel formation process could be understood based on material diffusion coefficients through the spinel buffer layer but shell layer crystal structure seems to play a significant role.  相似文献   
7.
New ligands were obtained by the reaction of 1,3‐bis(3‐aminopropyl)tetramethyldisiloxane, with acetylacetone, 2,4‐dihydroxybenzophenone and 2,4‐dihydroxyacetophenone. The structures were confirmed by electronic, IR and 1H NMR spectroscopy and elemental analysis. The change of the refractive index of the siloxanes by their chemical modification was also examined. These compounds were used for coordination of some divalent metals. The ligands and their metal complexes were both soluble in common solvents, such as CHCl3, dimethylformamide, dimethylsulfoxide, N‐methyl‐2‐pyrrolidone. Some of the bifunctional chelates were inserted into polymeric structures by polycondensation with the diacid chloride of bis(p‐carboxyphenyl)diphenylsilane. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
8.
9.
The catalytic properties of ZnAlVO mixed oxides derived from decavanadate-exchanged ZnAl–layered double hydroxide (LDH) precursors prepared by a sol–gel method (ZnAlVO–LDHx,y) were investigated in the oxidative dehydrogenation of propane and compared with those of supported catalysts obtained by conventional impregnation of NH4VO3 on ZnO (ZnVO-I,y) and ZnAlO mixed oxide (ZnAlVO-I,y) supports. The effects of composition and calcination time on the catalytic behavior were particularly examined. Higher propane conversions were achieved at higher vanadium content and calcination time of the precursors. The LDH-derived catalysts were the most active ones in all the temperature range studied (300–425 °C). The order of activity for propane conversion for the different catalyst families varies as ZnAlVO–LDHx,y > ZnAlVO-I > ZnVO-I and follows the strength of the Lewis and Brønsted acid sites determined by monitoring of pyridine adsorption by Fourier transform infrared spectroscopy, whereas the propene selectivities are close together in agreement with the similar densities of basic sites determined by CO2–temperature-programmed desorption measurements. It was indeed established that the acidity, rather than the nature of the crystalline phases, the reducibility, or the specific surface area of the samples, governs the catalytic activity.  相似文献   
10.
To study the photobleaching of the main fluorescent compounds of the arterial wall, we repeatedly measured the time-resolved fluorescence of elastin, collagen and cholesterol during 560 s of excitation with nitrogen laser pulses. Three fluence rate levels were used: 0.72, 7.25 and 21.75 microW/mm2. The irradiation-related changes of the fluorescence intensity and of the time-resolved fluorescence decay constants were characterized for the emission at 390, 430 and 470 nm. The fluorescence intensity at 390 nm decreased by 25-35% when the fluence delivered was 4 mJ/mm2, a common value in fluorescence studies of the arterial wall. Cholesterol fluorescence photobleached the most, and elastin fluorescence photobleached the least. Photobleaching was most intense at 390 nm and least intense at 470 nm such that the emission spectra of the three compounds were markedly distorted by photobleaching. The time-resolved decay constants and the fluorescence lifetime were not altered by irradiation when the fluence was below 4 mJ/mm2. The spectral distortions associated with photobleaching complicate the interpretation of arterial wall fluorescence in terms of tissue content in elastin, collagen and cholesterol. Use of the time-dependent features of the emission that are not altered by photobleaching should increase the accuracy of arterial wall analysis by fluorescence spectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号