首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
化学   20篇
物理学   8篇
  2023年   1篇
  2022年   2篇
  2020年   3篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2008年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1995年   1篇
  1993年   1篇
  1988年   1篇
  1986年   2篇
  1981年   1篇
排序方式: 共有28条查询结果,搜索用时 0 毫秒
1.
Transition‐metal complexes containing stimuli‐responsive systems are attractive for applications in optical devices, photonic memory, photosensing, as well as luminescence imaging. Amongst them, photochromic metal complexes offer the possibility of combining the specific properties of the metal centre and the optical response of the photochromic group. The synthesis, the electrochemical properties and the photophysical characterisation of a series of donor–acceptor azobenzene derivatives that possess bipyridine groups connected to a 4‐dialkylaminoazobenzene moiety through various linkers are presented. DFT and TD‐DFT calculations were performed to complement the experimental findings and contribute to their interpretation. The position and nature of the linker (ethynyl, triazolyl, none) were engineered and shown to induce different electronic coupling between donor and acceptor in ligands and complexes. This in turn led to strong modulations in terms of photoisomerisation of the ligands and complexes.  相似文献   
2.
The nonlinear properties and the photophysical behavior of two π‐conjugated chromophores that incorporate an electron‐deficient pyrimidine core (A) and γ‐methylenepyrans as terminal donor (D) groups have been thoroughly investigated. Both dipolar and quadrupolar branching strategies are explored and rationalized on the basis of the Frenkel exciton model. Even though a cooperative effect is clearly observed if the dimensionality is increased, the nonlinear optical (NLO) response of this series is moderate if one considers the nature of the D/A couple and the size of the chromophores (as measured by the number of π electrons). This effect was attributed to a disruption in the electronic conjugation within the dyes’ scaffold for which the geometry deviates from planarity owing to a noticeable twisting of the pyranylidene end‐groups. This latter structural parameter also has a strong influence on the excited‐state dynamics, which leads to a very efficient fluorescence quenching.  相似文献   
3.
4.
5.
Two azacrown derivatives of carbazole have been prepared and their dipole moments in the excited state were estimated from solvatochromism. Their complexation constant K with calcium and sodium cations have been determined from the absorption spectra, the fluorescence spectra and, independently, from the first oxidation potential shift, as a function of the concentration in sodium and calcium perchlorates, when K is lower than 105. The fluorescence spectra of the calcium and sodium complexes in acetonitrile show two bands different from the fluorescence of the free probes, one from the excited complex similar to the fluorescence of the protonated probes and the other one from the nitrogen decoordinated cation complexes. These results are typical for moderatly polar crowned merocyanines with the ionophore acting as an electron-donor substituent. The stepwise decoordination rate of the calcium and sodium cations from the nitrogen atom of the fluorophore is competitive with the rate constant of fluorescence which accounts for the multiple fluorescence but does not allow a distant diffusion of the cations. From the study of the longer lived radical-cation of the azacrown carbazoles, generated electrochemically, the metal cations are completely released from the azacrown receptor as revealed by the unsensitivity of the second oxidation potential to the perchlorate salts. From the probe-cation pair with the higher association constant (log K > 6) the oxidation peak for the complex allows to estimate the decrease of K upon the oxidation of the probe to be a value of K ?+/K = 8 × 10-4.  相似文献   
6.
The photophysical properties of a series of 1,8-naphthalimide photoacid generators were studied by steady state fluorescence and phosphorescence spectroscopy. Emission and excitation anisotropies, triplet quantum yields in polar and nonpolar solvent and photoacid generation were evaluated. The singlet excited state exhibits a low polarity and is strongly deactivated by an efficient intersystem crossing process. In protic solvent, a homolytic singlet cleavage of the N-O bond occurs and leads to the acid production. The existence of a triplet state close to the singlet state was clearly evidenced. The presence of close singlet excited states is supported by fluorescence anisotropy and picosecond laser spectroscopy experiments. Results of DFT calculations well confirm the experimental contentions and yield important information about the cleavage process involved in such compounds.  相似文献   
7.
The photophysics of 2-methyl-1-[4-(methylthio) phenyl]-2-(4-morpholinyl)-1-propanone TPMK, compared to that of two reference compounds (2-methyl-1-phenyl-2-(4-morpholinyl)-1-propanone and 1-[4-(methylthio)phenyl]-ethanone), was studied by means of absorption spectroscopy, phosphorescence and time-resolved absorption spectroscopy. A four-level kinetic scheme has been proposed for TPMK as an explanation for the observed excited state processes. A strong solvent effect has been noticed upon the excited state lifetimes. Modeling calculations help to describe the excited state properties.  相似文献   
8.
Novel thioxanthone (TX) derivatives are used as versatile photoinitiators upon visible light‐emitting diode (LED; e.g., 405, 425, and 450 nm) exposure. The mechanisms for the photochemical generation of reactive species (i.e., cations and free radicals) produced from photoinitiating systems based on the photoinitiator and an iodonium salt, tris(trimethylsilyl)silane, or an amine, were studied by UV–vis spectroscopy, fluorescence, cyclic voltammetry, steady‐state photolysis, and electron spin resonance spin‐trapping techniques. The reactive species are particularly efficient for cationic, free radical, hybrid, and thiol‐ene photopolymerizations upon LED exposure. The optimized photoinitiating systems exhibit higher efficiency than those of reference systems (i.e., isopropyl TX‐based photoinitiating systems), especially in the visible range. According to their beneficial features, these photoinitiating systems have considerable potential in photocuring applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4037–4045  相似文献   
9.
Photoinitiators are critical to initiate chain reactions in photopolymerization. For such applications, the absorption of photoinitiator must be compatible with the emission of light sources and enables the fast manufacturing of three-dimensional network or structures. Light-emitting diode (LED) is a new kind of energy-saving and environmental protection light source, exhibiting a substantial response in the near UV and visible range to replace the traditional mercury lamp and other light sources in photopolymerization. Here, we introduce methyl oxalate into bicarbazole chromophore ( BiCz ). By variation of the single or double substituents in the BiCz , we demonstrate that the absorption spectra can be adjusted and redshift to visible range and show good absorption in the near UV and visible range (365–475 nm). We explore their photochemistry based on experimental results and theoretical calculations and the mechanism of photoreactions have been verified. The super photostability by themselves and good hydrogen abstraction ability from amine co-initiator make them as excellent near UV and visible light active photoinitiators. Critically, the photoinitiation of the free-radical polymerization of acrylate monomers with low content (0.1% concentration) upon LED irradiation at 365–475 nm, exhibits excellent application potential in light curing and other fields.  相似文献   
10.
金明 《高分子科学》2016,34(12):1456-1468
A series of D-π-A type sulfonium salt photoacid generators with different π-conjugated structures, such as triphenyl, phenylstilbene, styryl-biphenyl, and stilbene, were designed to determine the effect of molecular structures on the photochemical and photophysical properties. The mechanisms of photochemical generation of H+ were studied by UV-Vis spectroscopy, theoretical calculations, and fluorescence spectroscopy. It is found that the frontier orbits determine the absorption, the molar extinction coefficients, and the quantum yields of photoacid generation. Triphenyl systems connected with sulfonium are beneficial to increase the quantum yields of acid generation. The photoreactivity of four sulfonium salts was further evaluated through the polymerizations of various epoxide monomers at different irradiation wavelengths (365–425 nm) by using the real-time infrared spectroscopy with light-emitting diodes. The high quantum yields for acid generation (Φ H + = ~0.32 to 0.58) and the high molar extinction coefficients (ε = ~23500 L?mol?1?cm?1 to 31000 L?mol?1?cm?1) of the sulfonium salts lead to high conversion rates (over 50%–80%). Hence, these photoinitiators exhibit potential for the photocuring applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号