首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   4篇
化学   36篇
力学   13篇
数学   5篇
物理学   31篇
  2023年   1篇
  2021年   4篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   6篇
  2014年   5篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   9篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2001年   3篇
  2000年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1933年   1篇
  1931年   1篇
  1930年   2篇
  1877年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
1.
High-energy assisted extraction techniques, like ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE), are widely applied over the last years for the recovery of bioactive compounds such as carotenoids, antioxidants and phenols from foods, animals and herbal natural sources. Especially for the case of xanthophylls, the main carotenoid group of crustaceans, they can be extracted in a rapid and quantitative way with the use of UAE and MAE.  相似文献   
2.
We consider the problem of maintaining a dynamic ordered set of n integers in a universe U under the operations of insertion, deletion and predecessor queries. The computation model used is a unit-cost RAM, with a word length of w bits, and the universe size is |U|=2w. We present a data structure that uses O(|U|/log|U|+n) space, performs all the operations in O(loglog|U|) time and needs O(loglog|U|/logloglog|U|) structural changes per update operation. The data structure is a simplified version of the van Emde Boas' tree introducing, in its construction and functioning, new concepts, which help to keep the important information for searching along the path of the tree, in a more compact and organized way.  相似文献   
3.
4.
This paper numerically explores the possibility of ultrathin layering and high efficiency of graphene as a back surface field (BSF) based on a CdTe solar cell by Personal computer one-dimensional (PC1D) simulation. CdTe solar cells have been characterized and studied by varying the carrier lifetime, doping concentration, thickness, and bandgap of the graphene layer. With simulation results, the highest short-circuit current (Isc = 2.09 A), power conversion efficiency (η = 15%), and quantum efficiency (QE~85%) were achieved at a carrier lifetime of 1 × 103 μs and a doping concentration of 1 × 1017 cm−3 of graphene as a BSF layer-based CdTe solar cell. The thickness of the graphene BSF layer (1 μm) was proven the ultrathin, optimal, and obtainable for the fabrication of high-performance CdTe solar cells, confirming the suitability of graphene material as a BSF. This simulation confirmed that a CdTe solar cell with the proposed graphene as the BSF layer might be highly efficient with optimized parameters for fabrication.  相似文献   
5.
Starting from Lagrangian principles we develop a formalism suitable for describing coupled optical parity-time symmetric systems.  相似文献   
6.
Novel photosynthetic reaction center model compounds of the type donor2–donor1–acceptor, composed of phenothiazine, BF2‐chelated dipyrromethene (BODIPY), and fullerene, respectively, have been newly synthesized using multistep synthetic methods. X‐ray structures of three of the phenothiazine‐BODIPY intermediate compounds have been solved to visualize the substitution effect caused by the phenothiazine on the BODIPY macrocycle. Optical absorption and emission, computational, and differential pulse voltammetry studies were systematically performed to establish the molecular integrity of the triads. The N‐substituted phenothiazine was found to be easier to oxidize by 60 mV compared to the C‐substituted analogue. The geometry and electronic structures were obtained by B3LYP/6‐31G(dp) calculations (for H, B, N, and O) and B3LYP/6‐31G(df) calculations (for S) in vacuum, followed by a single‐point calculation in benzonitrile utilizing the polarizable continuum model (PCM). The HOMO?1, HOMO, and LUMO were, respectively, on the BODIPY, phenothiazine and fullerene entities, which agreed well with the site of electron transfer determined from electrochemical studies. The energy‐level diagram deduced from these data helped in elucidating the mechanistic details of the photochemical events. Excitation of BODIPY resulted in ultrafast electron transfer to produce PTZ–BODIPY.+–C60.?; subsequent hole shift resulted in PTZ.+–BODIPY–C60.? charge‐separated species. The return of the charge‐separated species was found to be solvent dependent. In nonpolar solvents the PTZ.+–BODIPY–C60.? species populated the 3C60* prior to returning to the ground state, while in polar solvent no such process was observed due to relative positioning of the energy levels. The 1BODIPY* generated radical ion‐pair in these triads persisted for few nanoseconds due to electron transfer/hole‐shift mechanism.  相似文献   
7.
We report a Ni‐catalyzed regioselective α‐carbonylalkylarylation of vinylarenes with α‐halocarbonyl compounds and arylzinc reagents. The reaction works with primary, secondary, and tertiary α‐halocarbonyl molecules, and electronically varied arylzinc reagents. The reaction generates γ,γ‐diarylcarbonyl derivatives with α‐secondary, tertiary, and quaternary carbon centers. The products can be readily converted to aryltetralones, including a precursor to Zoloft, an antidepressant drug.  相似文献   
8.
9.
A maximum likelihood method for estimating remote surface orientation from multi-static acoustic, optical, radar, or laser images is presented. It is assumed that the images are corrupted by signal-dependent noise, known as speckle, arising from complex Gaussian field fluctuations, and that the surface properties are effectively Lambertian. Surface orientation estimates for a single sample are shown to have biases and errors that vary dramatically depending on illumination direction. This is due to the signal-dependent nature of speckle noise and the nonlinear relationship between surface orientation, illumination direction, and fluctuating radiance. The minimum number of independent samples necessary for maximum likelihood estimates to become asymptotically unbiased and to attain the lower bound on resolution of classical estimation theory are derived, as are practical design thresholds.  相似文献   
10.
In quantum theory, any Hamiltonian describing a physical system is mathematically represented by a self-adjoint linear operator to ensure the reality of the associated observables. In an attempt to extend quantum mechanics into the complex domain, it was realized few years ago that certain non-Hermitian parity-time (PT\mathcal{PT}) symmetric Hamiltonians can exhibit an entirely real spectrum. Much of the reported progress has been remained theoretical, and therefore hasn’t led to a viable experimental proposal for which non Hermitian quantum effects could be observed in laboratory experiments. Quite recently however, it was suggested that the concept of PT\mathcal{PT}-symmetry could be physically realized within the framework of classical optics. This proposal has, in turn, stimulated extensive investigations and research studies related to PT\mathcal{PT}-symmetric Optics and paved the way for the first experimental observation of PT\mathcal{PT}-symmetry breaking in any physical system. In this paper, we present recent results regarding PT\mathcal{PT}-symmetric Optics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号