首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
化学   8篇
数学   1篇
物理学   1篇
  2019年   1篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The planar complexes [Ni(II)(pyN(2)(R2))(OH)](-), containing a terminal hydroxo group, are readily prepared from N,N'-(2,6-C(6)H(3)R(2))-2,6-pyridinedicarboxamidate(2-) tridentate pincer ligands (R(4)N)(OH), and Ni(OTf)(2). These complexes react cleanly and completely with carbon dioxide in DMF solution in a process of CO(2) fixation with formation of the bicarbonate product complexes [Ni(II)(pyN(2)(R2))(HCO(3))](-) having η(1)-OCO(2)H ligation. Fixation reactions follow second-order kinetics (rate = k(2)'[Ni(II)-OH][CO(2)]) with negative activation entropies (-17 to -28 eu). Reactions were monitored by growth and decay of metal-to-ligand charge-transfer (MLCT) bands at 350-450 nm. The rate order R = Me > macro > Et > Pr(i) > Bu(i) > Ph at 298 K (macro = macrocylic pincer ligand) reflects increasing steric hindrance at the reactive site. The inherent highly reactive nature of these complexes follows from k(2)' ≈ 10(6) M(-1) s(-1) for the R = Me system that is attenuated by only 100-fold in the R = Ph complex. A reaction mechanism is proposed based on computation of the enthalpic reaction profile for the R = Pr(i) system by DFT methods. The R = Et, Pr(i), and Bu(i) systems display biphasic kinetics in which the initial fast process is followed by a slower first order process currently of uncertain origin.  相似文献   
2.
In this article we compare the classical monopole mass filter of von Zahn and the monopole mass filter with a hyperbolic V-shaped electrode. The experimental results and those of computer simulation for both mass spectrometers are presented. We show that the replacement of a conventional 90 degrees V-shaped electrode by an electrode with a hyperbolic profile substantially improves the peak shape of any given mass, and increases the mass resolution by a factor of 3-4 and the abundance sensitivity by a factor of 100. The potential of high analytical performance combined with electroforming techniques for electrode manufacture indicate future practical uses of such instruments. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
3.
Binding of inorganic anions, carboxylic acids, and tetraalkylammonium carboxylates by macrocyclic compounds of different size was studied by NMR in DMSO-d6. It has been shown that at least a 15-membered ring is necessary for successful recognition of fluoride. Larger macrocycles were shown to bind HSO4(-), H2PO4(-), Cl(-), and carboxylic acid salts. Effects of binding topicity are discussed. The 30-membered macrocycles 4 and 4m selectively bind substrates that are size- and shape-complementary: maximum binding is observed for dicarboxylic acids and dicarboxylates with four-carbon chains, and the binding constant for association of fumaric acid and 4 is ca. 5 orders of magnitude higher than that of maleic acid. The 30-membered macrocycle 4m showed selectivity toward alpha-ketocarboxylic acids. Secondary amino groups were not crucial for binding of fluoride to the macrocycles; however, they proved to be very important for selectivity and strength of carboxylic acid binding. The X-ray structure of the adduct of 4 and nitrobenzoic acid confirmed the guest H-bonding with both the amide and the secondary amino groups of the 30-membered macrocyclic host.  相似文献   
4.
5.
A new aminopyridine ligand derived from bipiperidine (the product of full reduction of bipyridine, bipy) coordinates to iron(II) in a cis-α fashion, yielding a new selective catalyst for olefin epoxidation with H(2)O(2) under limiting substrate conditions.  相似文献   
6.
Metalloenzymes often utilize radicals in order to facilitate chemical reactions. Recently, DeGrado and co-workers have discovered that model proteins can efficiently stabilize semiquinone radical anion produced by oxidation of 3,5-di-tert-butylcatechol (DTBC) in the presence of two zinc ions. Here, we show that the number and the nature of metal ions have relatively minor effect on semiquinone stabilization in model proteins, with a single metal ion being sufficient for radical stabilization. The radical is stabilized by both metal ion, hydrophobic sequestration, and interactions with the hydrophilic residues in the protein interior resulting in a remarkable, nearly 500 mV change in the redox potential of the SQ . /catechol couple compared to bulk aqueous solution. Moreover, we have created 4G-UFsc, a single metal ion-binding protein with pm affinity for zinc that is higher than any other reported model systems and is on par with many natural zinc-containing proteins. We expect that the robust and easy-to-modify DFsc/UFsc family of proteins will become a versatile tool for mechanistic model studies of metalloenzymes.  相似文献   
7.
Regioselective hydroxylation of aromatic acids with hydrogen peroxide proceeds readily in the presence of iron(II) complexes with tetradentate aminopyridine ligands [FeII(BPMEN)(CH3CN)2](ClO4)2 ( 1 ) and [FeII(TPA)(CH3CN)2](OTf)2 ( 2 ), where BPMEN=N,N′‐dimethyl‐N,N′‐bis(2‐pyridylmethyl)‐1,2‐ethylenediamine, TPA=tris‐(2‐pyridylmethyl)amine. Two cis‐sites, which are occupied by labile acetonitrile molecules in 1 and 2 , are available for coordination of H2O2 and substituted benzoic acids. The hydroxylation of the aromatic ring occurs exclusively in the vicinity of the anchoring carboxylate functional group: ortho‐hydroxylation affords salicylates, whereas ipso‐hydroxylation with concomitant decarboxylation yields phenolates. The outcome of the substituent‐directed hydroxylation depends on the electronic properties and the position of substituents in the molecules of substrates: 3‐substituted benzoic acids are preferentially ortho‐hydroxylated, whereas 2‐ and, to a lesser extent, 4‐substituted substrates tend to undergo ipso‐hydroxylation/decarboxylation. These two pathways are not mutually exclusive and likely proceed via a common intermediate. Electron‐withdrawing substituents on the aromatic ring of the carboxylic acids disfavor hydroxylation, indicating an electrophilic nature for the active oxidant. Complexes 1 and 2 exhibit similar reactivity patterns, but 1 generates a more powerful oxidant than 2 . Spectroscopic and labeling studies exclude acylperoxoiron(III) and FeIV?O species as potential reaction intermediates, but strongly indicate the involvement of an FeIII? OOH intermediate that undergoes intramolecular acid‐promoted heterolytic O? O bond cleavage, producing a transient iron(V) oxidant.  相似文献   
8.
Asymptotic analysis of the problem describing deformation ofa thin cylindrical plate with clamped lateral side is performed.The problem is considered under the most general statement withthe plate being laminated and consisting of an arbitrary numberof nonhomogeneous and anisotropic (21 elastic moduli) layers.Explicit integral representations of the differential operatorswhich form the two-dimensional model of the plate are derived.In the case when the elastic moduli of each of the layers areconstant, these integral representations turn into algebraicones. The asymptotic procedure is justified with the help ofa weighted inequality of Korn's type. The error estimates obtainedgive a rigorous mathematical proof of both of Kirchhoff's hypotheses(kinematic and static) and shed light on the well-known intrinsicinconsistency of two of the hypotheses.  相似文献   
9.
We have shown that de novo designed peptides self‐assemble in the presence of copper to create supramolecular assemblies capable of carrying out the oxidation of dimethoxyphenol in the presence of dioxygen. Formation of the supramolecular assembly, which is akin to a protein fold, is critical for productive catalysis since peptides possessing the same functional groups but lacking the ability to self‐assemble do not catalyze substrate oxidation. The ease with which we have discovered robust and productive oxygen activation catalysts suggests that these prion‐like assemblies might have served as intermediates in the evolution of enzymatic function and opens the path for the development of new catalyst nanomaterials.  相似文献   
10.
Mechanism of substrate oxidations with hydrogen peroxide in the presence of a highly reactive, biomimetic, iron aminopyridine complex, [FeII(bpmen)(CH3CN)2][ClO4]2 ( 1 ; bpmen=N,N'‐dimethyl‐N,N'‐bis(2‐pyridylmethyl)ethane‐1,2‐diamine), is elucidated. Complex 1 has been shown to be an excellent catalyst for epoxidation and functional‐group‐directed aromatic hydroxylation using H2O2, although its mechanism of action remains largely unknown. 1 , 2 Efficient intermolecular hydroxylation of unfunctionalized benzene and substituted benzenes with H2O2 in the presence of 1 is found in the present work. Detailed mechanistic studies of the formation of iron(III)–phenolate products are reported. We have identified, generated in high yield, and experimentally characterized the key FeIII(OOH) intermediate (λmax=560 nm, rhombic EPR signal with g=2.21, 2.14, 1.96) formed by 1 and H2O2. Stopped‐flow kinetic studies showed that FeIII(OOH) does not directly hydroxylate the aromatic rings, but undergoes rate‐limiting self‐decomposition producing transient reactive oxidant. The formation of the reactive species is facilitated by acid‐assisted cleavage of the O? O bond in the iron–hydroperoxide intermediate. Acid‐assisted benzene hydroxylation with 1 and a mechanistic probe, 2‐Methyl‐1‐phenyl‐2‐propyl hydroperoxide (MPPH), correlates with O? O bond heterolysis. Independently generated FeIV?O species, which may originate from O? O bond homolysis in FeIII(OOH), proved to be inactive toward aromatic substrates. The reactive oxidant derived from 1 exchanges its oxygen atom with water and electrophilically attacks the aromatic ring (giving rise to an inverse H/D kinetic isotope effect of 0.8). These results have revealed a detailed experimental mechanistic picture of the oxidation reactions catalyzed by 1 , based on direct characterization of the intermediates and products, and kinetic analysis of the individual reaction steps. Our detailed understanding of the mechanism of this reaction revealed both similarities and differences between synthetic and enzymatic aromatic hydroxylation reactions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号