首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学   14篇
物理学   2篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2018年   2篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2008年   1篇
  2003年   2篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
A photoswitchable double-shell structure on Au nanoparticles, consisting of photochromic spiropyran as the first shell, which regulates the assembly and release of an outer shell of amino acid derivatives upon irradiation, is being reported for the first time. The light-regulated changes in the topographic properties of spiropyran-capped Au nanoparticles (i.e., interconversion between the zwitterionic and neutral forms) are exploited for the assembly and release of amino acid-based therapeutic agents such as l-DOPA.  相似文献   
2.
Self-organization of organic molecules through weak noncovalent forces such as CH/π interactions and creation of large hierarchical supramolecular structures in the solid state are at the very early stage of research. The present study reports direct evidence for CH/π interaction driven hierarchical self-assembly in π-conjugated molecules based on custom-designed oligophenylenevinylenes (OPVs) whose structures differ only in the number of carbon atoms in the tails. Single-crystal X-ray structures were resolved for these OPV synthons and the existence of long-range multiple-arm CH/π interactions was revealed in the crystal lattices. Alignment of these π-conjugated OPVs in the solid state was found to be crucial in producing either right-handed herringbone packing in the crystal or left-handed helices in the liquid-crystalline mesophase. Pitch- and roll-angle displacements of OPV chromophores were determined to trace the effect of the molecular inclination on the ordering of hierarchical structures. Furthermore, circular dichroism studies on the OPVs were carried out in the aligned helical structures to prove the existence of molecular self-assembly. Thus, the present strategy opens up new approaches in supramolecular chemistry based on weak CH/π hydrogen bonding, more specifically in π-conjugated materials.  相似文献   
3.
We report CH/π hydrogen‐bond‐driven self‐assembly in π‐conjugated skeletons based on oligophenylenevinylenes (OPVs) and trace the origin of interactions at the molecular level by using single‐crystal structures. OPVs were designed with appropriate pendants in the aromatic core and varied by hydrocarbon or fluorocarbon tails along the molecular axis. The roles of aromatic π‐stack, van der Waals forces, fluorophobic effect and CH/π interactions were investigated on the theromotropic liquid crystallinity of OPV molecules. Single‐crystal structures of hydrocarbon OPVs provided direct evidence for the existence of CH/π interactions between the π‐ring (H‐bond acceptor) and alkyl C? H (H‐bond donor). The four important crystallographic parameters, dc?x=3.79 Å, θ=21.49°, φ=150.25° and dHp?x=0.73 Å, matched in accordance with typical CH/π interactions. The CH/π interactions facilitate the close‐packing of mesogens in xy planes, which were further protruded along the c axis producing a lamellar structure. In the absence of CH/π interactions, van der Waals interactions drove the assembly towards a Schlieren nematic texture. Fluorocarbon OPVs exhibited smectic liquid‐crystalline textures that further underwent Smectic A (SmA) to Smectic C (SmC) phase transitions with shrinkage up to 11 %. The orientation and translational ordering of mesogens in the liquid‐crystalline (LC) phases induced H‐ and J‐type molecular arrangements in fluorocarbon and hydrocarbon OPVs, respectively. Upon photoexcitation, the H‐ and J‐type molecular arrangements were found to emit a blue or yellowish/green colour. Time‐resolved fluorescence decay measurements confirmed longer lifetimes for H‐type smectic OPVs relative to that of loosely packed one‐dimensional nematic hydrocarbon‐tailed OPVs.  相似文献   
4.
Self‐organization of organic molecules through weak noncovalent forces such as CH/π interactions and creation of large hierarchical supramolecular structures in the solid state are at the very early stage of research. The present study reports direct evidence for CH/π interaction driven hierarchical self‐assembly in π‐conjugated molecules based on custom‐designed oligophenylenevinylenes (OPVs) whose structures differ only in the number of carbon atoms in the tails. Single‐crystal X‐ray structures were resolved for these OPV synthons and the existence of long‐range multiple‐arm CH/π interactions was revealed in the crystal lattices. Alignment of these π‐conjugated OPVs in the solid state was found to be crucial in producing either right‐handed herringbone packing in the crystal or left‐handed helices in the liquid‐crystalline mesophase. Pitch‐ and roll‐angle displacements of OPV chromophores were determined to trace the effect of the molecular inclination on the ordering of hierarchical structures. Furthermore, circular dichroism studies on the OPVs were carried out in the aligned helical structures to prove the existence of molecular self‐assembly. Thus, the present strategy opens up new approaches in supramolecular chemistry based on weak CH/π hydrogen bonding, more specifically in π‐conjugated materials.  相似文献   
5.
6.
The rapid development of new applications of photoredox catalysis has so far outpaced the mechanistic studies important for rational design of new classes of catalysts. Here, we report the use of ultrafast transient absorption spectroscopic methods to reveal both mechanistic and kinetic details of multiple sequential steps involved in an organocatalyzed atom transfer radical polymerization reaction. The polymerization system studied involves a N,N-diaryl dihydrophenazine photocatalyst, a radical initiator (methyl 2-bromopropionate) and a monomer (isoprene). Time-resolved spectroscopic measurements spanning sub-picosecond to microseconds (i.e., almost 8 orders of magnitude of time) track the formation and loss of key reactive intermediates. These measurements identify both the excited state of the photocatalyst responsible for electron transfer and the radical intermediates participating in propagation reactions, as well as quantifying their lifetimes. The outcomes connect the properties of N,N-diaryl dihydrophenazine organic photocatalysts with the rates of sequential steps in the catalytic cycle.

Short-lived intermediates are tracked in real-time by transient absorption spectroscopy during a multi-step photoredox catalysed polymerization reaction.  相似文献   
7.
We here demonstrate a remarkable potential-dependent morphological evolution of platinum mesostructures in the form of multipods, discs, and hexagons using a porous anodic alumina membrane (PAAM). These structures prepared potentiostatically at -0.7, -0.5 and -0.3 V, respectively, reveal unique shape-dependent electrocatalytic activity toward both formic acid and ethanol oxidation reactions. A comparison of the electrooxidation kinetics of these structures illustrates that hexagons show better performance toward formic acid oxidation whereas, for ethanol oxidation, multipods show significantly enhanced activity. Interestingly, the enhancement factor (R) for these mesostructures with respect to that of commercial platinized carbon toward formic acid oxidation ranges up to 2000% for hexagons whereas for multipods and disc they are about 700% and 300%, respectively. Similarly, for ethanol oxidation, the calculated value of R varies up to 600% for multipods while for disc and hexagons these values are 500% and 200%, respectively. These shape-dependent electrocatalytic activity of Pt mesostructures have been further correlated with XRD results. Thus, the present results demonstrate the importance of precise control of morphology by an electric field and their potential benefits especially for fuel cell applications since designing a better electrocatalyst for many fuel cell reactions continues to be an important challenge.  相似文献   
8.
Research on Chemical Intermediates - A new series of hybridized thiazol-2-yl-hydrazone derivatives having diverse substituents were designed, synthesized, and screened for their anti-inflammatory...  相似文献   
9.
In this report, we have primarily studied the influence of nickel (Ni) incorporation on ac electrical conductivity, dielectric relaxation mechanism and impedance spectroscopy characteristics of copper oxide (CuO) thin films synthesized by successive ion layer adsorption and reaction (SILAR) technique. The materials has been characterized using X-ray diffraction and UV–VIS spectrophotometric measurements. Reduction in grain size in doped films up to a certain extent of doping (tentatively 6%) were confirmed from XRD analysis, beyond which there is a reverse tendency. Increase in band gap in doped films were observed up to 6% doping level which could be associated with enhanced carrier density in doped films. Impedance spectroscopy analysis confirmed enhancement of ac conductivity and dielectric constant for doped samples. The results are useful for capacitive application of the films. Beyond 6% doping level, AC conductivity and dielectric constant shows a reverse tendency indicating reduced density of charge carriers. Nyquist plot shows contribution of both grain and grain boundary towards total resistance and capacitance. Imaginary part of complex modulus and imaginary part of complex impedance was used to find the migration/activation energy to electrical conduction process. Nearly identical result was obtained from relaxation frequency/relaxation time approach suggesting hopping mechanism of charge carriers.  相似文献   
10.
UV-thermal denaturation is a simple optical method widely employed for determination of DNA stability and interaction with ligands. Thermal denaturation of DNA and DNA-ligand complex is usually monitored at 260 nm. These data are generally presented as a function of the absorption increase of DNA alone with no consideration of the temperature dependent hyperchromism of the free ligand. Since not every ligand has absorption at 260 nm, usually this property of the ligand is ignored. Here, we report the temperature dependent hyperchromicity exhibited by Hoechst 33258 in the presence and absence of DNA. The presence of Hoechst, added to the duplex (monophasic profile, T(m)=75 degrees C) in various ratios generates a new transition at lower temperature displaying biphasic thermal transition profiles. We attributed this new transition (hyperchromic), a mere contribution from Hoechst, which might exist in aggregated forms. The extent of drug aggregation/self-association is concentration dependent. We suggest that prior to UV-melting studies the thermal dependence of the free ligand should be investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号