首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   7篇
晶体学   1篇
数学   1篇
物理学   4篇
  2022年   1篇
  2019年   3篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
2.
The green synthesis of silver nanoparticles (AgNPs) has been proposed as a simple, eco-friendly and cost effective alternative to chemical and physical methods. The Rhus chinensis plant is one of the well studied medicinal plant and its galls find excellent clinical and therapeutic applications. The present study reports the use of water extract from galls of R. chinensis as a reducing agent and formation of AgNPs from silver nitrate solution by a green synthesis route. The AgNPs formation was observed visually by color change and the absorbance peak at 450 nm was observed by UV–Visible spectrophotometer. The shape, size, and morphology of synthesized AgNPs were monitored by transmission electron microscopy and field-emission scanning electron microscopy. The face centered cubic structure of AgNPs was confirmed by X-ray diffraction pattern and element composition by energy dispersive X-ray analysis. The Fourier transform infrared spectroscopy spectrum revealed that the presence of components acts as a reducing and capping agent. The antibacterial activity was performed using the agar well diffusion method. Minimum inhibitory concentration and minimum bactericidal concentration were determined by broth dilution and spread plate method respectively. Synthesized nanoparticles were spotted as triangular and hexagonal shape and the particle size was around 150 nm.  相似文献   
3.
Nanocrystalline arrays of Ni2+ substituted Mg–Zn spinel ferrite having a generic formula Mg0.7−xNixZn0.3Fe2O4 (x=0.0, 0.2, 0.4 and 0.6) were successfully synthesized by sol–gel auto-combustion technique. The fuel used in the synthesis process was citric acid and the metal nitrate-to-citric acid ratio was taken as 1:3. The phase, crystal structure and morphology of Mg–Ni–Zn ferrites were investigated by X-ray diffraction, scanning electron microscopy, and Fourier transformer infrared spectroscopy techniques. The lattice constant, crystallite size, porosity and cation distribution were determined from the X-ray diffraction data method. The FTIR spectroscopy is used to deduce the structural investigation and redistribution of cations between octahedral and tetrahedral sites of Mg–Ni–Zn spinel structured material. Morphological investigation suggests the formation of grain growth as the Ni2+ content x increases. The saturation magnetization and magneton number were determined from hysteresis loop technique. The saturation magnetization increases with increasing Ni2+ concentration ‘x’ in Mg–Zn ferrite.  相似文献   
4.
5.
Neutral and cationic cyclopentadienone (CpO) N‐heterocyclic carbene (NHC) bis‐carbonyl iron(0) complexes bearing, appended to the NHC ligand, either a terminal amino group on the lateral chain, [Fe(η4‐CpO)(CO)2C‐NHC(CH2)nNH2)] with n = 2 ( 2a ) and 3 ( 2b ), or a cationic NMe3+ fragment, [Fe(η4‐CpO)(CO)2C‐NHC(CH2)2NMe3)](I) ( 3 ), were prepared and characterized in terms of their structure, stability and reactivity. The photochemical properties of 2a and 2b were examined both in organic solvents and in water, revealing the photoactivated release of one CO ligand followed by the formation of the chelated complex [Fe(η4‐CpO)(CO)(κ2C,N‐NHC(CH2)2NH2)] ( 4 ), whose molecular structure was confirmed by single crystal X‐ray diffraction studies. This metallacyclization occurs only in the case of 2a , with the ethylene spacer between NHC ring and NH2 group in the lateral chain, allowing the formation of a stable 6‐membered ring. On the other hand, 2b undergoes decomposition upon irradiation. The reactivity in aqueous solutions revealed the chemical speciation of the complexes at different pH and especially under physiological conditions (phosphate buffer solution at pH 7.4 and 37 °C). The lack of data on the biological properties of iron(0) complexes prompted us to preliminarily investigate their cytotoxicity against model cancer cells (AsPC‐1 and HPAF‐II), along with a determination of their lipophilicity.  相似文献   
6.
In this study, a green chemistry method is reported for the synthesis of Ag2O nanoparticles with the utilization of starch molecules as a stabilizing agent. In particular, by simply adjusting the concentration of starch in the reaction media, the structure of A2O nanoparticles can be engineered in disc and faceted shapes, which has been analyzed by transmission electron microscopy, UV-Vis spectroscopy, and X-ray diffraction technique. In addition, antibacterial activity of the prepared Ag2O nanoparticles had been evaluated against food poisoning and pathogenic bacteria.  相似文献   
7.
Liposomes and polymerosomes generally represent the two most widely used carriers for encapsulating compounds, in particular drugs for delivery. While these are well established carriers, recent applications in biomedicine and food industry have necessitated the use of proteins as robust carriers that are stable under extreme acidic and basic conditions, have practically no toxicity and are able to withstand high shear force. This review highlights the different methods for using proteins as encapsulating materials and lists some biomedical applications of the microcapsules. The advantages and limitations in the capsules from the different preparation routes are enumerated.  相似文献   
8.
In this study, a novel series of 5‐piperazinethiazole 2,2‐dimethylbutanoic acid and 5‐piperidinethiazole 2,2‐dimethylbutanoic acid derivatives have been synthesized. Structures of the newly synthesized compounds have been elucidated using 1H‐NMR, 13C‐NMR, high‐resolution mass spectroscopy, and high‐performance liquid chromatographic analysis. The synthesized derivatives have been evaluated in vitro for their ability to inhibit the enzyme diacylglycerol acyltransferase 1 responsible for triglyceride biosynthesis.  相似文献   
9.
Polycrystalline samples of Li0.5Fe2.5O4 spinel ferrite have been synthesized by a standard ceramic technique. The samples were irradiated with an Nd:YAG laser to study the effect of laser irradiation on the structural, dielectric and AC impedance properties. The X-ray diffraction results show the formation of a disordered cubic structure after irradiation. The dielectric constant (?′), dielectric loss (?″) and the loss tangent (tan δ ) were measured at room temperature as a function of frequency (f=20 Hz–1 MHz) for the irradiated and unirradiated samples of Li0.5Fe2.5O4 spinel ferrite. The dielectric constant of the irradiated samples is decreased in magnitude compared to the unirradiated samples. It was found that laser irradiation increases the polarization and the resistivity of the samples as a result of electronic rearrangement and lattice defects. The AC conductivity of the samples was derived from the dielectric constant and loss tangent data. The change in AC conductivity is attributed to the creation of lattice vacancies after laser irradiation. The AC impedance analysis was used to separate the grain and grain boundary of the Li0.5Fe2.5O4 spinel ferrite.  相似文献   
10.
Abstract

The synthesis of the compound and its crystal structure having a monoclinic crystal system has been reported earlier. Optimized bond lengths and angles are showing good agreements with experimental data using DFT/B3LYP method. Energy of highest occupied molecular orbital and lowest unoccupied molecular orbital has been predicted to analyze the stabilities of compound. Crystal explorer 17.5 helps to visualize intermolecular interactions and its contributions to each interaction within molecule. The preeminence of dispersion energy component over the other components was established by interaction energy calculations and lattice energy framework analysis using same software. The molecular docking study was performed for molecule using AutoDock software.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号