首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   10篇
  国内免费   1篇
化学   55篇
力学   1篇
数学   7篇
物理学   1篇
  2023年   4篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2018年   3篇
  2017年   2篇
  2016年   7篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
Peptides are a rapidly growing class of therapeutics with various advantages over traditional small molecules, especially for targeting difficult protein–protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing bioactive cyclic topologies that go beyond natural l-amino acids. Here, we report a generalizable framework that exploits the computational power of Rosetta, in terms of large-scale backbone sampling, side-chain composition and energy scoring, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we developed two new inhibitors (PD-i3 and PD-i6) of programmed cell death 1 (PD-1), a key immune checkpoint in oncology. A comprehensive biophysical evaluation was performed to assess their binding to PD-1 as well as their blocking effect on the endogenous PD-1/PD-L1 interaction. Finally, NMR elucidation of their in-solution structures confirmed our de novo design approach.

In silico design of heterochiral cyclic peptides that bind to a specific surface patch on the target protein (PD-1, in this case) and disrupt protein–protein interactions.  相似文献   
2.
3.
A series of rhodium and iridium complexes with a N-heterocyclic carbene (NHC) ligand decorated with a perylene-diimide-pyrene moiety are described. Electrochemical studies reveal that the complexes can undergo two successive one-electron reduction events, associated to the reduction of the PDI moiety attached to the NHC ligand. The reduction of the ligand produces a significant increase on its electron-donating character, as observed from the infrared spectroelectrochemical studies. The rhodium complex was tested in the [3+2] cycloaddition of diphenylcyclopropenone and methylphenylacetylene, where it displayed a redox-switchable behavior. The neutral complex showed moderate activity, which was suppressed when the catalyst was reduced.  相似文献   
4.
5.
6.
The Hierarchical Network Design Problem consists of locating a minimum cost bi-level network on a graph. The higher level sub-network is a path visiting two or more nodes. The lower level sub-network is a forest connecting the remaining nodes to the path. We optimally solve the problem using an ad hoc branch and cut procedure. Relaxed versions of a base model are solved using an optimization package and, if binary variables have fractional values or if some of the relaxed constraints are violated in the solution, cutting planes are added. Once no more cuts can be added, branch and bound is used. The method for finding valid cutting planes is presented. Finally, we use different available test instances to compare the procedure with the best known published optimal procedure, with good results. In none of the instances we needed to apply branch and bound, but only the cutting planes.  相似文献   
7.
8.
Chemical reactivity towards electron transfer is captured by the Fukui function.However,this is not well defined when the system or its ions have degenerate or pseudo-degenerate ground states.In such a case,the first-order chemical response is not independent of the perturbation and the correct response has to be computed using the mathematical formalism of perturbation theory for degenerate states.Spatialpseudo-degeneracy is ubiquitous in nanostructures with high symmetry and totally extended systems.Given the size of these systems,using degenerate-state perturbation theory is impractical because it requires the calculation of many excited states.Here we present an alternative to compute the chemical response of extended systems using models of local softness in terms of the local density of states.The local softness is approximately equal to the density of states at the Fermi level.However,such approximation leaves out the contribution of inner states.In order to include and weight the contribution of the states around the Fermi level,a model inspired by the long-range behavior of the local softness is presented.Single wall capped carbon nanotubes(SWCCNT) illustrate the limitation of the frontier orbital theory in extended systems.Thus,we have used a C360 SWCCNT to test the proposed model and how it compares with available models based on the local density of states.Interestingly,a simple Hü ckel approximation captures the main features of chemical response of these systems.Our results suggest that density-of-states models of the softness along simple tight binding Hamiltonians could be used to explore the chemical reactivity of more complex system,such a surfaces and nanoparticles.  相似文献   
9.
We describe a novel pericyclic/anionic cascade reaction on tropolonic substrates that combines a Diels-Alder reaction, an oxa-Michael addition, and an acyloin rearrangement to afford tricyclic α-hydroxy-β-methoxyketones. Spectroscopic, crystallographic, and mechanistic studies indicate that the process requires stabilization of reaction intermediates through intramolecular H-bonding to take place, and suggest that the conjugate addition step involves a catalytic cycle with initial formation of an ammonium enolate and sustained by an alkoxide ion pair. Given the rich functionality and structural complexity generated in a single step, the process could be exploited in the preparation of natural product-like compound libraries.  相似文献   
10.
A novel class of derivatized acetylacetonate (acac) linkers for robust functionalization of TiO2 nanoparticles (NPs) under aqueous and oxidative conditions is reported. The resulting surface adsorbate anchors are particularly relevant to engineering photocatalytic and photovoltaic devices since they can be applied to attach a broad range of photosensitizers and photocatalytic complexes and are not affected by humidity. Acac is easily modified by CuI-mediated coupling reactions to provide a variety of scaffolds, including substituted terpy complexes (terpy = 2,2':6,2'-terpyridine), assembled with ligands coordinated to transition-metal ions. Since Mn-terpy complexes are known to be effective catalysts for oxidation chemistry, functionalization with Mn(II) is examined. This permits visible-light sensitization of TiO2 nanoparticles due to interfacial electron transfer, as evidenced by UV-vis spectroscopy of colloidal thin films and aqueous suspensions. The underlying ultrafast interfacial electron injection is complete on a subpicosecond time scale, as monitored by optical pump-terahertz probe transient measurements and computer simulations. Time-resolved measurements of the Mn(II) EPR signal at 6 K show that interfacial electron injection induces Mn(II) --> Mn(III) photooxidation, with a half-time for regeneration of the Mn(II) complex of ca. 23 s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号