首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   1篇
物理学   2篇
  2013年   2篇
  1989年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
We present series of molecular dynamics simulations to study the structure of different porous matrix configurations. The present simulations are an extension of recently reported data at a temperature below the critical. Here, we show how temperature modifies the structure and porosity of pore matrices during their preparation in comparison with the previous work. Moreover, in these studies at a higher temperature, we studied in more detail the structure of the porous matrix. Matrices were prepared by two different processes. The first method consisted of a single Lennard-Jones fluid simulated at a fixed density and at a supercritical temperature. Then, the matrix configuration was taken from the last configuration of the fluid. The second method was prepared from a binary mixture, where one of the components served as a template material. The final porous matrix configuration was obtained by removing template particles from the mixture. Matrices were prepared at two different densities and at different matrix particle interactions. The volume distribution, the cluster formation and the connectivity between the particles in the pore matrix were investigated. The importance of using template particles was clear since they produced larger voids and higher porosities. On the other hand, the temperature of preparation seems to modify the size of the voids and the porosity in the matrices. For instance, at this high temperature, the matrix porosity is higher when template particles are present in the system. These results point in the opposite direction compared to those found in a previous paper at a lower temperature. The diffusion of fluids immersed in the different matrices was also analysed by calculating the mean square displacements of their particles. It was observed that this quantity was higher when matrices were prepared with template particles. These results also point to different directions in contrast with pore matrices prepared at a lower temperature. Finally, the results show that temperature plays an important role in the pore matrix formation.  相似文献   
2.
When sporangiophores of the fungus Phycomyces blakesleeanus adapt from high to low fluence rate, dark adaptation (sensitivity recovery) can be accelerated by dim subliminal light [Galland et al. (1989) Photochem. Photobiol. 49, 485-491]. We measured fluence rate-response curves for this acceleration under the following conditions. After sporangiophores were initially adapted symmetrically to a fluence rate of 1 W m-2 (447 nm), they were exposed to unilateral subliminal light (subthreshold for phototropism) of variable wavelength and fluence rate, and then to unilateral test light (447 nm) of fluence rate either 10(-3) or 10(-5) W m-2. The duration of the subliminal light was chosen so that phototropism would not occur during this period. Phototropic latencies could be shortened by subliminal light that was less intense than the test light by several orders of magnitude. In experiments with the final unilateral light of fluence rate 10(-3) W m-2, the 447 nm subliminal light had a threshold (for the acceleration effect) of about 10(-11) W m-2. Yellow light of wavelength 575 nm, which itself is extremely ineffective for phototropism was extremely effective in shortening phototropic latencies in response in response to the test light. At 575 nm, the threshold was about 2 x 10(-12) W m-2. Conversely, near-UV light of wavelength 347 nm, which is highly effective for phototropism, was relatively ineffective (threshold approximately 7 x 10(-8) W m-2) in shortening the phototropic latency. Our results suggest the presence of a novel yellow-light absorbing pigment in Phycomyces that specifically regulates dark adaptation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
We present a series of molecular dynamics simulations to study the porosity on different matrix configurations. The matrices were prepared using two different processes. In the fist method we used direct simulations of a fluid at a fixed density and the matrix was taken from the last configuration of its particles. In the second method we simulated a binary mixture where one of the components served as a template material and the final porous matrix configuration was obtained by removing template particles from the mixture. Matrices were prepared at different densities and at different matrix particle interactions. The results showed that the matrix structure and the matrix porosity were affected by the way the porous matrices were prepared. Finally, we also investigated the diffusion of a fluid inside the matrices. The diffusion coefficient was measured by mean square displacements of the particles in the fluid. It was observed that this quantity was also affected by the kind of porous matrix employed. The calculations were performed for several fluids at different densities in the different porous matrices. From these studies we observed that the highest porosity and diffusion coefficient were found in matrices prepared with attractive particle interactions and without any template.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号