首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   6篇
力学   2篇
物理学   3篇
  2020年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
  1999年   1篇
  1991年   1篇
排序方式: 共有11条查询结果,搜索用时 62 毫秒
1.
碱金属钾对Ni基催化剂纤维素水蒸气气化活性的影响   总被引:2,自引:0,他引:2  
采用两段式催化气化方式研究了生物质热解气化过程中碱金属的挥发对Ni基催化剂活性的影响。实验结果表明,负载K盐的纤维素水蒸气催化气化过程中,K挥发后会在催化剂表面沉积,而少量K的存在和表面沉积不但能够提高镍基催化剂的抗积炭能力,而且有助于提高其催化活性,产生更多的氢气。然而纤维素中K的浓度过大,将会抑制Ni基催化剂的效果;K在催化剂上的沉积随催化剂循环次数的增加而增加,K的含量愈高,对催化剂的抑制效果愈明显,从而缩短了催化剂的使用寿命。  相似文献   
2.
Phase-alternated compositeπ/2 pulses have been constructed for spinI=1 to overcome quadrupole interaction effects in solid state nuclear magnetic resonance (NMR) spectroscopy. Magnus expansion approach is used to design these sequences in a manner similar to the NMR coherent averaging theory. It is inferred that the symmetric phase-alternated compositeπ/2 pulses reported here are quite successful in producing quadrupole echo free from phase distortions. This effectiveness of the present composite pulses is due to the fact that most of them are of shorter durations as compared to the ones reported in literature. In this theoretical procedure, irreducible spherical tensor operator formalism is employed to simplify the complexity involved in the evaluation of Magnus expansion terms. It has been argued in this paper that compositeπ/2 pulse sequences for this purpose can also be derived from the broadband inversionπ pulses which are designed to compensate electric field gradient (efg) inhomogeneity in spinI=1 nuclear quadrupole resonance (NQR) spectroscopy.  相似文献   
3.
It has long been recognized that garlic and petiveria, two plants of the Allium genus--which also includes onions, leeks and shallots--possess great medicinal value. In recent times, the biological activities of extracts of these plants have been ascribed to the antioxidant properties of the thiosulfinate secondary metabolites allicin and S-benzyl phenylmethanethiosulfinate (BPT), respectively. Herein we describe our efforts to probe the mechanism of the radical-trapping antioxidant activity of these compounds, as well as S-propyl propanethiosulfinate (PPT), a saturated analog representative of the thiosulfinates that predominate in non-medicinal alliums. Our experimental results, which include thiosulfinate-inhibited autoxidations of the polyunsaturated fatty acid (ester) methyl linoleate, investigations of their decomposition kinetics, and radical clock experiments aimed at obtaining some quantitative insights into their reactions with peroxyl radicals, indicate that the radical-trapping activity of thiosulfinates is paralleled by their propensity to undergo Cope elimination to yield a sulfenic acid. Since sulfenic acids are transient species, we complement our experimental studies with the results of theoretical calculations aimed at understanding the radical-trapping behaviour of the sulfenic acids derived from allicin, BPT and PPT, and contrasting the predicted thermodynamics and kinetics of their reactions with those of the parent thiosulfinates. The calculations reveal that sulfenic acids have among the weakest O-H bonds known (ca. 70 kcal mol(-1)), and that their reactions with peroxyl radicals take place by a near diffusion-controlled proton-coupled electron transfer mechanism. As such, it is proposed that the abundance of a thiosulfinate in a given plant species, and the ease with which it undergoes Cope elimination to form a sulfenic acid, accounts for the differences in antioxidant activity, and perhaps medicinal value, of extracts of these plants. Interestingly, while the Cope elimination of 2-propenesulfenic acid from allicin is essentially irreversible, the analogous reaction of BPT is readily reversible. Thus, in the absence of chain-carrying peroxyl radicals (or other appropriately reactive trapping agent), BPT is reformed.  相似文献   
4.
Sulfenic acids play a prominent role in biology as key participants in cellular signaling relating to redox homeostasis, in the formation of protein‐disulfide linkages, and as the central players in the fascinating organosulfur chemistry of the Allium species (e.g., garlic). Despite their relevance, direct measurements of their reaction kinetics have proven difficult owing to their high reactivity. Herein, we describe the results of hydrocarbon autoxidations inhibited by the persistent 9‐triptycenesulfenic acid, which yields a second order rate constant of 3.0×106 M ?1 s?1 for its reaction with peroxyl radicals in PhCl at 30 °C. This rate constant drops 19‐fold in CH3CN, and is subject to a significant primary deuterium kinetic isotope effect, kH/kD=6.1, supporting a formal H‐atom transfer (HAT) mechanism. Analogous autoxidations inhibited by the Allium‐derived (S)‐benzyl phenylmethanethiosulfinate and a corresponding deuterium‐labeled derivative unequivocally demonstrate the role of sulfenic acids in the radical‐trapping antioxidant activity of thiosulfinates, through the rate‐determining Cope elimination of phenylmethanesulfenic acid (kH/kD≈4.5) and its subsequent formal HAT reaction with peroxyl radicals (kH/kD≈3.5). The rate constant that we derived from these experiments for the reaction of phenylmethanesulfenic acid with peroxyl radicals was 2.8×107 M ?1 s?1; a value 10‐fold larger than that we measured for the reaction of 9‐triptycenesulfenic acid with peroxyl radicals. We propose that whereas phenylmethanesulfenic acid can adopt the optimal syn geometry for a 5‐centre proton‐coupled electron‐transfer reaction with a peroxyl radical, the 9‐triptycenesulfenic is too sterically hindered, and undergoes the reaction instead through the less‐energetically favorable anti geometry, which is reminiscent of a conventional HAT.  相似文献   
5.
针对EAST上2.45GHz低杂波,完成了低杂波平行波数测量磁探针的设计、仿真与测试。利用有限元仿真软件COMSOL Multiphysics 5.2对磁探针尺寸进行仿真优化,确定了单匝环、矩形缝以及陶瓷片厚度等影响磁探针耦合性能的关键尺寸。测试结果表明,该磁探针对2.45GHz低杂波有良好的耦合性能和鉴别波极化的能力,与仿真结果一致。研究结果为EAST装置上低杂波平行波数测量诊断系统的建立提供重要的参考依据,从而为进一步开展高密度低杂波电流驱动实验研究提供必要的实验数据。  相似文献   
6.
Implementations of the Boussinesq wave model to calculate free surface wave evolution in large basins are, in general, computationally very expensive, requiring huge amounts of CPU time and memory. For large scale problems, it is either not affordable or practical to run on a single PC. To facilitate such extensive computations, a parallel Boussinesq wave model is developed using the domain decomposition technique in conjunction with the message passing interface (MPI). The published and well‐tested numerical scheme used by the serial model, a high‐order finite difference method, is identical to that employed in the parallel model. Parallelization of the tridiagonal matrix systems included in the serial scheme is the most challenging aspect of the work, and is accomplished using a parallel matrix solver combined with an efficient data transfer scheme. Numerical tests on a distributed‐memory super‐computer show that the performance of the current parallel model in simulating wave evolution is very satisfactory. A linear speedup is gained as the number of processors increases. These tests showed that the CPU time efficiency of the model is about 75–90%. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
7.
Results from extensive 70 ns all-atom molecular dynamics simulations of catechol-O-methyltransferase (COMT) enzyme are reported. The simulations were performed with explicit TIP3P water and Mg2?+ ions. Four different crystal structures of COMT, with and without different ligands, were used. These simulations are among the most extensive of their kind and as such served as a stability test for such simulations. On the methodological side we found that the initial energy minimization procedure may be a crucial step: particular hydrogen bonds may break, and this can initiate an irreversible loss of protein structure that becomes observable in longer time scales of the order of tens of nanoseconds. This has important implications for both molecular dynamics and quantum mechanics–molecular mechanics simulations.  相似文献   
8.
9.
Sulfenic acids play a prominent role in biology as key participants in cellular signaling relating to redox homeostasis, in the formation of protein-disulfide linkages, and as the central players in the fascinating organosulfur chemistry of the Allium species (e.g., garlic). Despite their relevance, direct measurements of their reaction kinetics have proven difficult owing to their high reactivity. Herein, we describe the results of hydrocarbon autoxidations inhibited by the persistent 9-triptycenesulfenic acid, which yields a second order rate constant of 3.0×10(6) M(-1) s(-1) for its reaction with peroxyl radicals in PhCl at 30?°C. This rate constant drops 19-fold in CH(3)CN, and is subject to a significant primary deuterium kinetic isotope effect, k(H)/k(D) = 6.1, supporting a formal H-atom transfer (HAT) mechanism. Analogous autoxidations inhibited by the Allium-derived (S)-benzyl phenylmethanethiosulfinate and a corresponding deuterium-labeled derivative unequivocally demonstrate the role of sulfenic acids in the radical-trapping antioxidant activity of thiosulfinates, through the rate-determining Cope elimination of phenylmethanesulfenic acid (k(H)/k(D) ≈ 4.5) and its subsequent formal HAT reaction with peroxyl radicals (k(H)/k(D) ≈ 3.5). The rate constant that we derived from these experiments for the reaction of phenylmethanesulfenic acid with peroxyl radicals was 2.8×10(7) M(-1) s(-1); a value 10-fold larger than that we measured for the reaction of 9-triptycenesulfenic acid with peroxyl radicals. We propose that whereas phenylmethanesulfenic acid can adopt the optimal syn geometry for a 5-centre proton-coupled electron-transfer reaction with a peroxyl radical, the 9-triptycenesulfenic is too sterically hindered, and undergoes the reaction instead through the less-energetically favorable anti geometry, which is reminiscent of a conventional HAT.  相似文献   
10.
A hybrid wave model is developed for simulation of water wave propagation from deep water to shoreline. The constituent wave models are the irrotational, 1‐D horizontal Boussinesq and 2‐D vertical Reynolds‐averaged Navier–Stokes (RANS). The models are two‐way coupled, and the interface is placed at a location where turbulence is relatively small. Boundary conditions on the interfacing side of each model are provided by its counterpart model through data exchange. Prior to the exchange, a data transformation step is carried out due to the differences in physical variables and approximations employed in both models. The hybrid model is tested for both accuracy and speedup performance. Tests consisting of idealized solitary and standing wave motions and wave overtopping of nearshore structures show that: (1) the simulation results of the current hybrid model compare well with the idealized data, experimental data, and pure RANS model results and (2) the hybrid model saves computational time by a factor proportional to the reduction in the size of the RANS model domain. Finally, a large‐scale tsunami simulation is provided for a numerical setup that is practically unapproachable using RANS model alone; not only does the hybrid model offer more rapid simulation of relatively small‐scale problems, it provides an opportunity to examine very large total domains with the fine resolution typical of RANS simulations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号