首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   1篇
晶体学   2篇
  2019年   1篇
  2012年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
An increase and homogenization of electrical conductivity is essential in epoxy carbon fiber laminar aeronautical composites. Dynamic conductivity measurements have shown a very poor transversal conductivity. Double wall carbon nanotubes have been introduced into the epoxy matrix to increase the electrical conductivity. The conductivity and the degree of dispersion of carbon nanotubes in epoxy matrix were evaluated. The epoxy matrix was filled with 0.4 wt.% of CNTs to establish the percolation threshold. A very low value of carbon nanotubes is crucial to maintain the mechanical properties and avoid an overload of the composite weight. The final carbon fiber aeronautical composite realized with the carbon nanotubes epoxy filled was studied. The conductivity measurements have shown a large increase of the transversal electrical conductivity. The percolative network has been established and scanning electron microscopy images confirm the presence of the carbon nanotube conductive pathway in the carbon fiber ply. The transversal bulk conductivity has been homogenized and improved to 10? 1 S·m? 1 for a carbon nanotubes loading near 0.12 wt.%.  相似文献   
2.
Nickel nanowires with high aspect ratio (250) were elaborated and incorporated into poly(vinylidene difluoride-trifluoroethylene) up to 30 vol% via solvent mixing way. These nanocomposites are characterized by a conductive behavior with a high electrical conductivity value (102 S m?1) above a very low percolation threshold (0.75 vol% of metallic nanowires). The introduction of nanowires strongly depressed the matrix crystallinity. Static and dynamic mechanical analysis have been realized at low nanowire volume fraction (< 10 vol%). Below 5 vol% of nanowires, nanocomposites remain ductile. The dynamic mechanical properties are related to the volume fraction of nanowires. A strong increase of the viscoelastic contribution related to the increase of the percentage of amorphous phase is observed. The major effect is the increase of the rubbery modulus. The highest increase of 300% is obtained for only 5 vol% of nanowires; it represents an original mechanical result for low filled composites. The dependence versus nanowire content has been described by adapting the Halpin–Tsai model to high aspect ratio filler. Metallic nanowires create additional entanglements that are randomly distributed in the rubbery polymeric matrix. With their low percolation threshold, metallic nanowires based nanocomposites constitute a new class of multifunctional materials with a high conductivity associated with a ductile polymer matrix characterized by a high rubbery modulus.  相似文献   
3.

New poly(aryl ether ketone)s (PAEKs) with a low melting temperature (relative to PEEK) are of interest in order to simplify the manufacturing of high-performance polymers or composites. In this study, we propose to investigate the physical properties of a new PAEK from Victrex, namely PAEK LM. Combinations of thermal analyses were used as follows: standard and modulated temperature differential scanning calorimetry, dynamic mechanical analysis, dynamic dielectric analysis and guarded hot plate technique. We found that the global mechanical, dielectric and thermal properties are very similar to the PEEK reference. The glass transition temperature was observed in the same range than PEEK (∼ 150 °C) while the melting temperature Tm was measured at 307 °C for PAEK LM which is about 35 °C below the melting temperature of PEEK. The degree of crystallinity of PAEK LM was found to be 27% while for PEEK it is 38%, depending on the processing conditions. This work explored crystalline structure–property relationships to explain the behaviour of PAEK LM.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号