首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   1篇
化学   8篇
物理学   5篇
  2007年   2篇
  2002年   2篇
  2000年   2篇
  1996年   4篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
The application of open vessel focused microwave acid digestion is described for the preparation of geological and environmental samples for analysis using inductively coupled plasma-mass spectrometry (ICP-MS). The method is compared to conventional closed-vessel high pressure methods which are limited in the use of HF to break down silicates. Open-vessel acid digestion more conveniently enables the use of HF to remove Si from geological and plant samples as volatile SiF4, as well as evaporation-to-dryness and sequential acid addition during the procedure. Rock reference materials (G-2 granite, MRG-1 gabbros, SY-2 syenite, JA-1 andesite, and JB-2 and SRM-688 basalts) and plant reference materials (BCR and IAEA lichens, peach leaves, apple leaves, Durham wheat flour, and pine needles) were digested with results comparable to conventional hotplate digestion. The microwave digestion method gave poor results for granitic samples containing refractory minerals, however fusion was the preferred method of preparation for these samples. Sample preparation time was reduced from several days, using conventional hotplate digestion method, to one hour per sample using our microwave method.  相似文献   
2.
The major challenge to the use of laser ablation sample introduction, combined with inductively coupled plasma mass spectrometry, is the problem of calibration. In the geological analysis of minerals, calibration is complicated by the extraordinarily wide variety of sample matrices which may be encountered. While there is a lack of mineral standards with well characterized concentrations near 1 microg/g, the NIST glass reference materials (SRM 610-617) have been demonstrated to be very useful for the analysis of a wide variety of lithophile elements in silicate samples. An internal reference element, for which the concentration is known in the sample, has been widely used to make corrections for the multiplicative effects of volume (or weight) of the sample ablated, instrument drift, and matrix effects. This procedure works extremely well where elements being determined and the internal reference element being used share similar ablation behaviours; i.e., they do not fractionate progressively during the ablation and transport process. In this study, it is demonstrated that, in terms of ablation behaviour, elements fall into several distinct clusters and that the elements within these clusters correlate well with each other during a period of ablation. Thus, elements within a cluster can be determined using an internal reference element from within the same cluster. While a combination of periodic varying properties typifies the clusters, the geochemical classification of elements into lithophile (silicate loving), and chalcophile (sulphide loving) appears to offer the best characterization of the major groups.  相似文献   
3.
4.
The energy loss of hydrogen atoms with energies of 400 eV and 1 keV is studied in coincidence with the number of emitted electrons during grazing scattering from atomically clean and flat KI(001) and LiF(001) surfaces. The energy loss spectra for specific numbers of emitted electrons are analyzed in terms of a binary interaction model based on the formation of transient negative ions via local capture of valence band electrons from anion sites. Based on computer simulations we derive for this interaction scenario probabilities for the production of surface excitons, for electron loss to the conduction band of KI, for emission of electrons, and for formation of negative hydrogen ions. The pronounced differences of data obtained for the two surfaces are attributed to the different electronic structures of KI and LiF.  相似文献   
5.
A compact 14.5GHz electron cyclotron resonance (ECR) ion source for the production of slow, multiply charged ions has been constructed,with the plasma-confining magnetic field produced exclusively by permanent magnets.Microwave power of up to 175W in the frequency range from 12.75 to 14.SGHz is transmitted from ground potential via a PTFE window into the water-cooled plasma chamber which can be equipped with an aluminum liner.The waveguide coupling system serves also as biased electrode,and two remotely-controlled gas inlet valves connected via an insulating break permit plasma operation in the gas- mixing mode.A triode extraction system sustains ion acceleration voltages between 1kV and 10kV.The ECR ion source is fully computer-controlled and can be remotely operated from any desired location via Ethernet.  相似文献   
6.
The major challenge to the use of laser ablation sample introduction, combined with inductively coupled plasma mass spectrometry, is the problem of calibration. In the geological analysis of minerals, calibration is complicated by the extraordinarily wide variety of sample matrices which may be encountered. While there is a lack of mineral standards with well characterized concentrations near 1 g/g, the NIST glass reference materials (SRM 610–617) have been demonstrated to be very useful for the analysis of a wide variety of lithophile elements in silicate samples. An internal reference element, for which the concentration is known in the sample, has been widely used to make corrections for the multiplicative effects of volume (or weight) of the sample ablated, instrument drift, and matrix effects. This procedure works extremely well where elements being determined and the internal reference element being used share similar ablation behaviours; i.e., they do not fractionate progressively during the ablation and transport process. In this study, it is demonstrated that, in terms of ablation behaviour, elements fall into several distinct clusters and that the elements within these clusters correlate well with each other during a period of ablation. Thus, elements within a cluster can be determined using an internal reference element from within the same cluster. While a combination of periodic varying properties typifies the clusters, the geochemical classification of elements into lithophile (silicate loving), and chalcophile (sulphide loving) appears to offer the best characterization of the major groups.  相似文献   
7.
High backgrounds from polyatomic ions, formed from the argon plasma gas, impurities in the gas supply and atmospheric air entrainment of especially H, C, N, O, and Ar, are a limitation to Inductively Coupled Plasma-Mass Spectrometric (ICP-MS) analysis, especially for analytes with masses below 80 Dalton. When a dry plasma is utilized, instead of the more common wet plasma created when solution nebulization sample introduction is used, the relative contribution of air entrainment becomes more important. In this study, the sample introduction system used was an in-house constructed laser ablation microprobe designed for small volume sampling of geological materials. An enhanced sensitivity VG PQII+S ICP-MS was applied with different sample cone orifice diameters. Background, signal to background ratio, and detection limits are reported for ablated NIST glass reference material (SRM 612). By a reduction of the sample cone orifice diameter from 0.7 mm to 0.5 mm, the background was lowered by factor of ca. 100 in the low mass range and by a factor of ca. 10 in the higher mass range, while similar sensitivities were maintained. The reduced background improved the limits of detection from ca. 1 mg/g/g to <0.5 g/g in 10 m diameter pits and from ca. 100 ng/g to <10 ng/g in larger, 30 m pits.  相似文献   
8.
Elemental fractionation poses serious difficulties in obtaining accurate concentration and isotope ratio data when using laser ablation sampling. One of the factors that control the extent of laser-induced elemental fractionation is the composition of sample carrier gas in the sample cell. This study demonstrates that the presence of small amounts of oxygen in the He carrier gas has a significant effect on elemental fractionation during the ablation of silicate (NIST 612 glass and zircon 91500) and sulphide (NiS fire assay) samples. The extent of elemental fractionation for a given amount of ablated material and concentration of oxygen in the He carrier gas was related to the volume of the plasma plume that forms above the sample surface. This indicates that an oxidation reaction takes place in the plasma plume. It has been reported that oxidation can affect the particle size distribution during laser sampling and hence change the extent of elemental fractionation. The purity of the carrier gas used in laser ablation-ICP-MS, as well as the amount of oxygen released from silicate and oxide samples during the ablation in "oxygen-free" ambient gas, is shown to contribute significantly to elemental fractionation.  相似文献   
9.
10.
The surface electric properties of the commercially available silica, Monospher 1000 (Fa. Merck), have been studied by conductivity and ESA (electrokinetic sonic amplitude) experiments. It could be shown that accounting for the contribution of the stagnant layer to surface conductivity is indispensable in the interpretation of electrokinetic data at low ionic strength. A general method has been put forward which allows to take into account the total, experimentally accessible surface conductivity in the evaluation of ESA data of moderately concentrated suspensions. This includes additional conductivity measurements which serve for the independent estimation of the total relative surface conductivity. The resulting zeta-potentials are clearly higher than those obtained after neglecting the contribution of the stagnant layer to surface conductivity. In addition, the ionic mobilities of potassium and magnesium in the hydrodynamically stagnant layer have been investigated in some detail. It has been found that the ionic mobility of potassium is of the same order of magnitude as in the bulk solution while the mobility of magnesium is significantly reduced. Copyright 2000 Academic Press.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号