首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   3篇
化学   13篇
力学   1篇
数学   2篇
物理学   4篇
  2020年   4篇
  2018年   2篇
  2015年   1篇
  2013年   1篇
  2009年   1篇
  2007年   1篇
  2004年   1篇
  2002年   1篇
  2000年   3篇
  1998年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1975年   1篇
排序方式: 共有20条查询结果,搜索用时 0 毫秒
1.
2.
3.
K Singh  GK Sandhu  BS Lark  SP Sud 《Pramana》2002,58(3):521-528
Molar extinction coefficients of some carbohydrates viz. l-arabinose (C5H10O5), d-glucose (C6H12O6), d-mannose (C6H12O6), d-galactose (C6H12O6), d(-) fructose (C6H12O6) and maltose (C12H24O12) in aqueous solutions have been determined at 81, 356, 511, 662, 1173 and 1332 keV by gamma ray transmission method in a narrow beam good geometry set-up. These coefficients have been found to depend upon the photon energy following a 4-parameter polynomial. These extinction coefficients for different sugars having the same molecular formula have same values varying within experimental uncertainty. Within concentration ranges studied, Beer-Lambert law is obeyed very well.  相似文献   
4.
5.
In recent years, metal–organic frameworks (MOFs) have become an area of intense research interest because of their adjustable pores and nearly limitless structural diversity deriving from the design of different organic linkers and metal structural building units (SBUs). Among the recent great challenges for scientists include switchable MOFs and their corresponding applications. Switchable MOFs are a type of smart material that undergo distinct, reversible, chemical changes in their structure upon exposure to external stimuli, yielding interesting technological applicability. Although the process of switching shares similarities with flexibility, very limited studies have been devoted specifically to switching, while a fairly large amount of research and a number of Reviews have covered flexibility in MOFs. This Review focuses on the properties and general design of switchable MOFs. The switching activity has been delineated based on the cause of the switching: light, spin crossover (SCO), redox, temperature, and wettability.  相似文献   
6.
7.
Multi‐component metal–organic frameworks (MOFs) with precisely controlled pore environments are highly desired owing to their potential applications in gas adsorption, separation, cooperative catalysis, and biomimetics. A series of multi‐component MOFs, namely PCN‐900(RE), were constructed from a combination of tetratopic porphyrinic linkers, linear linkers, and rare‐earth hexanuclear clusters (RE6) under the guidance of thermodynamics. These MOFs exhibit high surface areas (up to 2523 cm2 g?1) and unlimited tunability by modification of metal nodes and/or linker components. Post‐synthetic exchange of linear linkers and metalation of two organic linkers were realized, allowing the incorporation of a wide range of functional moieties. Two different metal sites were sequentially placed on the linear linker and the tetratopic porphyrinic linker, respectively, giving rise to an ideal platform for heterogeneous catalysis.  相似文献   
8.
In contrast to the terminal phosphinidene complex PhPW(CO)(5) (2), which adds to [5]metacyclophane (1) in a 1,4-fashion, dichlorocarbene preferentially adds in a 1,2-fashion to the formal "anti-Bredt" type double bond of the aromatic ring of 1 to afford the norcaradiene 11b, which immediately rearranges to the bridged cycloheptatriene 12b and further by a [1,5] sigmatropic chlorine migration to the isomeric 13b as the first observable product. More slowly, the latter isomerizes via a dissociative mechanism to give 15b. A computational study supports the notion that the [1,5] chlorine migration in the rearrangement 12b --> 13b, for which an activation barrier of 70.2 kJ mol(-)(1) was calculated, is essentially concerted with minor charge separation. In contrast, the analogous [1,5] chlorine migration in the flat model compound 7,7-dichlorocycloheptatriene (12a) displays features of a dissociative pathway.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号