首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
化学   7篇
物理学   1篇
  2017年   2篇
  2015年   1篇
  2014年   3篇
  2012年   1篇
  2010年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Varying the processing conditions of semicrystalline polymers can produce different morphologies of crystallization, which leads to different properties. There have been extensive studies of flow‐induced crystallization on isotactic polypropylene (iPP) using predominantly shear flow. A stretching method, deduced from extrusion, was introduced to study the morphological evolution of elongation‐induced shish‐kebab crystallization. Different morphologies of the resultant samples with different draw ratios (DRs) were carefully investigated and characterized via differential scanning calorimetry, polarizing light microscopy, scanning electron microscopy, atomic force microscopy, and 2D small‐angle X‐ray scattering. In addition, the degree of orientation of the samples with different DRs was also investigated using the 2D wide‐angle X‐ray scattering technique. The results indicate that the elongation‐induced morphology is strongly dependent on the effective stretching flow expressed in terms of the DR, which is defined as the ratio of rates between take‐up and the extrusion. The spherulite is dominant at low DRs, but it starts to deform along the stretching direction with increasing DR. The shish‐kebab structure in the stretched film, composed of stretched chains (shish) and layered crystalline lamellae (kebabs), increases gradually with an increase in the DR, whereas the spherulites gradually decreased. Furthermore, the overall orientation of α‐phase crystals, expressed by the Hermans orientation parameter, is also found to increase dramatically with the DR, and the rate of increase strongly depends on the DR. The different crystal morphologies are attributed to crystallization induced by different elongations of the stretched iPP films. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1223–1234, 2010  相似文献   
2.
Crosslinked poly(vinyl alcohol) (PVA)/cellulose nanofibril (CNF) hybrid aerogel micro-spheres with two different particle sizes were fabricated via a combination of the water-in-oil (W/O) emulsification process and the freeze-drying process. The aerogel micro-spheres were highly porous with a bulk density as low as 0.0047 g/cm3 for the large microspheres. The pore size of the microspheres ranged from nano- to micro-meters. Preliminary biocompatibility assays of the aerogel microspheres were investigated with NIH 3T3 cells to explore their potential application as cell culture scaffolds. The highly crosslinked aerogel microspheres were robust and were able to maintain their shape during the cell culture process. The live/dead assay showed that the cells could be seeded, attached, and proliferated on the surface of PVA/CNF aerogel microspheres. The fluorescence images showed that some of the cells migrated into the inner pores of the microspheres. Moreover, the large microspheres with larger average pore sizes had a higher cell count than that of the small microspheres. This study confirms that the PVA/CNF aerogel microspheres fabricated in this work are nontoxic and biocompatible. Furthermore, the interconnected, highly porous nanofibrous structure of the microspheres can successfully facilitate cell attachment, differentiation, and proliferation.  相似文献   
3.
Crystallization has significant effects on the physical and mechanical properties of polymer products; therefore, crystallization measurements are important for understanding and predicting polymer products' properties. However, traditional crystallization measurement methods have disadvantages in practical applications because they can be destructive, offline, unsafe, and expensive. Recently, ultrasonic technology has shown great potential as a nondestructive, online, real‐time, and environmentally friendly measurement method for polymer characterization. In this study, a novel measurement method based on ultrasonic technology was proposed to study the crystallization characteristics of poly(lactic acid) (PLA) parts. An annealing process was employed to produce PLA parts with different degrees of crystallinity. A new ultrasonic water immersion method was used to measure the ultrasonic velocities of these annealed PLA parts. It has been found that the plot of the inverse ultrasonic velocity versus the degree of crystallinity shows good linearity over the whole crystallinity range for all three annealing temperatures. The linear relationship between the inverse of the ultrasonic velocity and the crystallinity observed in this study could provide a nondestructive method for investigating the degree of crystallinity of polymers, which can be implemented both offline and online. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 700–708  相似文献   
4.
Short cellulose nanofibrils (SCNF) were investigated as reinforcement for polyvinyl alcohol (PVA) fibers. SCNF were mechanically isolated from hard wood pulp after enzymatic pretreatment. Various levels of SCNF were added to an aqueous PVA solution, which was gel-spun into continuous fibers. The molecular orientation of PVA was affected by a combination of wet drawing during gel spinning and post-hot-drawing at a high temperature after drying. A maximum total draw ratio of 27 was achieved with various SCNF contents investigated. The PVA crystal orientation increased when small amounts of SCNF were added, but decreased again as the SCNF content was increased above about 2 or 3 %, likely due to SCNF percolation resulting in network formation that inhibited alignment. SCNF fillers were effective in improving PVA fiber tensile properties (i.e., ultimate strength and elastic modulus). For example, the ultimate strength and modulus of PVA/SCNF composite fiber with a SCNF weight ratio of 6 were nearly 60 and 220 % higher than that of neat PVA. Shifts in the Raman peak at ~1,095 cm?1, which were associated with the C–O–C glycosidic bond of SCNF, indicated good stress-transfer between the SCNF and the PVA matrix due to strong interfacial hydrogen bonding. Cryogenic fractured scanning electron microscopy images of filled and unfilled PVA fibers showed uniform SCNF dispersion.  相似文献   
5.
Poly(ε-caprolactone) (PCL)/cellulose nanocrystal (CNC) nanocomposites were produced via twin-screw extrusion. Microcellular nanocomposite samples were produced with microcellular injection molding using carbon dioxide (CO2) as physical blowing agent. The foaming behavior, physical properties, thermal properties, crystallization behavior, and biocompatibility were investigated. It was found that the CNCs interacted with the PCL matrix which led to a strong interface. The CNCs effectively acted as nucleation agents in microcellular injection molding. Both solid and foamed samples with higher levels of CNC content showed higher tensile moduli, complex viscosities, and storage moduli due to the reinforcement effects of CNCs. Furthermore, improvement in the foamed samples was more significant due to their fine cell structure. The addition of CNCs caused a reduction of the decomposition temperature and an increase in the glass transition temperature, crystallization temperature, and crystallinity of PCL. Moreover, the biocompatibility of the foamed nanocomposites with low CNC content was verified by 3T3 fibroblast cell culture.  相似文献   
6.
There is a big difference in the spatial scale between temperature field simulation and crystallisation simulation of the glass cooling process. The temperature field belongs to the macroscopic scale, while crystallisation is on the mesoscopic scale. In this paper, a coupled algorithm for the temperature field and crystallisation calculation is established in which the macroscopic temperature simulation is based on the finite element method while the mesoscopic crystallisation simulation is based on the Monte Carlo method using the Uhlmann model. In calculations, the temperature value is regarded as the input condition of the crystallisation calculation while the results of crystallisation in the form of latent heat are used as the input conditions for the temperature calculation. The pixel method is employed to deal with the collision process of crystal grain interfaces. A corresponding numerical simulation scheme has been developed and a multi-scale simulation of glass crystallisation and the cooling temperature field has been carried out. Finally, the presented model and developed simulation scheme have been shown to be very reasonable in comparison to both numerical predictions and with previous results from the literature.  相似文献   
7.
申长雨 《高分子科学》2014,32(7):864-870
A novel highly porous 3-D poly(ε-caprolactone)(PCL) scaffold with micro-channels was fabricated by injection molding and diluent acetic acids leaching technologies. In this study, the chitosan fiber was employed to form the microchannel in PCL matrix. The morphology, porosity and mechanical properties of the scaffolds were studied and calculated. It was found that the larger the content of chitosan fiber is, the higher the porosity would be, due to the volumetric expansion of chitosan fiber in PCL matrix during it being leached. In addition, the less the content of chitosan fiber is, the higher the compressive modulus would be.  相似文献   
8.
Polyvinyl alcohol (PVOH) and its nanofibrillated cellulose (NFC) reinforced nanocomposites were produced and foamed and its properties—such as the dynamic mechanical properties, crystallization behavior, and solubility of carbon dioxide (CO2)—were evaluated. PVOH was mixed with an NFC fiber suspension in water followed by casting. Transmission electron microscopy (TEM) images, as well as the optical transparency of the films, revealed that the NFC fibers dispersed well in the resulting PVOH/NFC nanocomposites. Adding NFC increased the tensile modulus of the PVOH/NFC nanocomposites nearly threefold. Differential scanning calorimetry (DSC) analysis showed that the NFC served as a nucleating agent, promoting the early onset of crystallization. However, high NFC content also led to greater thermal degradation of the PVOH matrix. PVOH/NFC nanocomposites were sensitive to moisture content and dynamic mechanical analysis (DMA) tests showed that, at room temperature, the storage modulus increased with decreasing moisture content. The solubility of CO2 in the PVOH/NFC nanocomposites depended on their moisture content and decreased with the addition of NFC. Moreover, the desorption diffusivity increased as more NFC was added. Finally, the foaming behavior of the PVOH/NFC nanocomposites was studied using CO2 and/or water as the physical foaming agent(s) in a batch foaming process. Only samples with a high moisture content were able to foam with CO2. Furthermore, the PVOH/NFC nanocomposites exhibited finer and more anisotropic cell morphologies than the neat PVOH films. In the absence of moisture, no foaming was observed in the CO2-saturated neat PVOH or PVOH/NFC nanocomposite samples.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号