首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   0篇
化学   77篇
数学   1篇
物理学   14篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   5篇
  2012年   2篇
  2011年   4篇
  2009年   2篇
  2008年   4篇
  2006年   2篇
  2005年   6篇
  2004年   3篇
  2003年   7篇
  2002年   5篇
  2001年   4篇
  2000年   9篇
  1998年   3篇
  1997年   1篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   9篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1976年   1篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
1.
We recently reported on the synthesis and pairing properties of the DNA analogue bicyclo[3.2.1]amide DNA (bca-DNA). In this analogue the nucleobases are attached via a linear, 4-bond amide-linker to a structurally preorganized sugar-phosphate backbone unit. To define the importance of the degree of structural rigidity of the bca-backbone unit on the pairing properties, we designed the structurally simpler cyclopentane amide DNA (cpa-DNA), in which the bicyclo[3.2.1]-scaffold was reduced to a cyclopentane unit while the base-linker was left unchanged. Here we present a synthetic route to the enantiomerically pure cpa-DNA monomers and the corresponding phosphoramidites containing the bases A and T, starting from a known, achiral precursor in 9 and 12 steps, respectively. Fully modified oligodeoxynucleotides were synthesized by standard solid-phase oligonucleotide chemistry, and their base-pairing properties with complementary oligonucleotides of the DNA-, RNA-, bca-DNA-, and cpa-DNA-backbones were assessed by UV melting curves and CD-spectroscopic methods. We found that cpa-oligoadenylates form duplexes with complementary DNA that are less stable by -2.7 degrees C/mod. compared to DNA. The corresponding cpa-oligothymidylates do not participate in complementary base-pairing with any of the investigated backbone systems except with its own (homo-duplex). As its congener bca-DNA, cpa-DNA seems to prefer left-handed helical duplex structures with DNA or with itself as indicated by the CD spectra.  相似文献   
2.
3.
Chemistry of α-Aminonitriles. Regioselective Synthesis and Crystal Structure of Uroporphyrinogen (Type I) Octanitrile A regioselective synthesis of uroporphyrinogen-octanitrile (type I) based on the strategy of multiple use of (dimethylmethylidene)ammonium iodide for stepwise regioselective functionalization of the pyrrole nucleus is described. This uroporphyrinogen derivative is remarkably stable and beautifully crystallizes in space group P1 with one molecule per unit cell. The crystal structure of the compound shows interesting conformational characteristics which are interpreted to be caused by subtle stereoelectronic effects. The English Footnotes to Schemes 1-3 and Figs. 1-12 provide an extension of this summary.  相似文献   
4.
The role of the DNA phosphodiester backbone in the transfer of melting cooperativity between two helical domains was experimentally addressed with a helix-bulge-helix DNA model, in which the bulge consisted of a varying number of either conformationally flexible propanediol or conformationally constrained bicyclic anucleosidic phosphodiester backbone units. We found that structural communication between two double helical domains is transferred along the DNA backbone over the equivalent of ca. 12-20 backbone units, depending on whether there is a symmetric or asymmetric distribution of the anucleosidic units on both strands. We observed that extension of anucleosidic units on one strand only suffices to disrupt cooperativity transfer in a similar way as if extension occurs on both strands, indicating that the length of the longest anucleosidic inset determines cooperativity transfer. Furthermore, conformational rigidity of the sugar unit increases the distance of coopertivity transfer along the phosphodiester backbone. This is especially the case when the units are asymmetrically distributed in both strands.  相似文献   
5.
6.
A series of oligonucleotides containing (5′S)‐5′‐C‐butyl‐ and (5′S)‐5′‐C‐isopentyl‐substituted 2′‐deoxyribonucleosides were designed, prepared, and characterized with the intention to explore alkyl‐zipper formation between opposing alkyl chains across the minor groove of oligonucleotide duplexes as a means to modulate DNA‐duplex stability. From four possible arrangements of the alkyl groups that differ in the density of packing of the alkyl chains across the minor groove, three (duplex types I – III , Fig. 2) could experimentally be realized and their duplex‐forming properties analyzed by UV‐melting curves, CD spectroscopy, and isothermal titration calorimetry (ITC), as well as by molecular modeling. The results show that all arrangements of alkyl residues within the minor groove of DNA are thermally destabilizing by 1.5–3°/modification in Tm. We found that, within the proposed duplexes with more loosely packed alkyl groups (type‐ III duplexes), accommodation of alkyl residues without extended distorsion of the helical parameters of B‐DNA is possible but does not lead to higher thermodynamic stability. The more densely packed and more unevenly distributed arrangement (type‐ II duplexes) seems to suffer from ecliptic positioning of opposite alkyl groups, which might account for a systematic negative contribution to stability due to steric interactions. The decreased stability in the type‐ III duplexes described here may be due either to missing hydrophobic interactions of the alkyl groups (not bulky enough to make close contacts), or to an overcompensation of favorable alkyl‐zipper formation presumably by loss of structured H2O in the minor groove.  相似文献   
7.
We present the synthesis of the isobicyclo‐DNA building blocks with the nucleobases A, C, G and T, as well as biophysical and biological properties of oligonucleotides derived thereof. The synthesis of the sugar part was achieved in 5 steps starting from a known intermediate of the tricyclo‐DNA synthesis. Dodecamers containing single isobicyclo‐thymidine incorporations, fully modified A‐ and T‐containing sequences, and fully modified oligonucleotides containing all four bases were synthesized and characterized. Isobicyclo‐DNA forms stable duplexes with natural nucleic acids with a pronounced preference for DNA over RNA as complements. The most stable duplexes, however, arise by self‐pairing. Isobicyclo‐DNA forms preferentially B‐DNA‐like duplexes with DNA and A‐like duplexes with complementary RNA as determined by circular dichroism (CD) spectroscopy. Self‐paired duplexes show a yet unknown structure, as judged from CD spectroscopy. Biochemical tests revealed that isobicyclo‐DNA is stable in fetal bovine serum and does not elicit RNaseH activity.  相似文献   
8.
The first total synthesis of optically active coraxeniolide-A (1a) and 4-epi-coraxeniolide-A (1b) is described. The approach is highly stereoselective and flexible in the preparation of a wide variety of members of the xeniolide family. The use of the Grob-fragmentation was pivotal for the stereospecific elaboration of the nine-membered ring. Coraxeniolide-A (1a) was synthesized in 28 steps by using the Hajos-Parrish diketone 2 as starting material which is available enantiomerically pure.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号