首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   7篇
数学   1篇
物理学   1篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2012年   1篇
  2011年   1篇
  2004年   1篇
  1998年   1篇
  1991年   1篇
排序方式: 共有9条查询结果,搜索用时 359 毫秒
1
1.
The metal complex Rh(acac)(CO)2 in the presence of an eqimolar amount of tris(o-methoxyphenyl)phosphine provides a useful catalyst system for the 1,4-addition of alkynes to unsubstituted vinyl ketones. Best yields are obtained when the transformation is performed in benzene at reflux with an excess of vinyl ketone. Both aryl and alkyl substituted alkynes participate in the reaction. Primary alcohols and alkyl chlorides are well tolerated under these reaction conditions. The reaction also proceeds in aqueous solvent mixtures, unlike most organometallic addition reactions.  相似文献   
2.
A one parameter, semi-empirical formula for Λ-binding energy of heavy hypernuclei in the inverse powers of core mass number (A c) has been developed in the framework of the folding model. Unlike similar calculations reported by other authors (Deloff 1971; Daskaloyanniset al 1985), we are able to take into account the effect arising from the difference in the number of protons and neutrons of the core nuclei having same mass number. The radius and diffuseness are parametrized using the experimentally known charge density data of a fairly large number of medium and heavy nuclei. The well depth parameter (i.e. Λ-binding energy in infinite nuclear matter) in the formula is obtained from a fit to theB Λ data of Λ 28 Si, Λ 40 Ca, Λ 51 V and Λ 39 Y. Using the original Λ-nucleus potential, theB Λ of ground and the experimentally known excited states of these hypernuclei have also been calculated by solving numerically the two-body Schrödinger equation. The agreement with the experimental data is satisfactory.  相似文献   
3.
Journal of Radioanalytical and Nuclear Chemistry - Cd and Zn were separated from Co, from chloride solutions containing 16 different metal ions. The separation method used was liquid–liquid...  相似文献   
4.
5.
6.
Five functional silanes--3-aminopropyltriethoxysilane (APTES), 3-aminopropyltrimethoxysilane (APTMS), N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AEAPTES), N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPTMS), and N-(6-aminohexyl)aminomethyltriethoxysilane (AHAMTES)--were assessed for the preparation of hydrolytically stable amine-functionalized silica substrates. These can be categorized into three groups (G1, G2, and G3) based on the intramolecular coordinating ability of the amine functionality to the silicon center. Silanizations were carried out in anhydrous toluene as well as in the vapor phase at elevated temperatures. Aminosilane-derived layers prepared in solution are multilayers in nature, and those produced in the vapor phase have monolayer characteristics. In general, vapor-phase reactions are much less sensitive to variations in humidity and reagent purity, are more practical than the solution-phase method, and generate more reproducible results. Intramolecular catalysis by the amine functionality is found to be important for both silanization and hydrolysis. The primary amine group in the G1 silanes (APTES and APTMS) can readily catalyze siloxane bond formation and hydrolysis to render their silane layers unstable toward hydrolysis. The amine functionality in the G3 silane (AHAMTES) is incapable of intramolecular catalysis of silanization so that stable siloxane bonds between the silane molecules and surface silanols do not form easily. The secondary amine group in the G2 silanes (AEAPTES and AEAPTMS), on the other hand, can catalyze siloxane bond formation, but the intramolecular catalysis of bond detachment is sterically hindered. The G2 silanes are the best candidates for preparing stable amine-functionalized surfaces. Between the two G2 aminosilanes, AEAPTES results in more reproducible silane layers than AEAPTMS in the vapor phase due to its lower sensitivity to water content in the reaction systems.  相似文献   
7.
8.
Surface grafting of cyclic olefins with low strain energies, including cyclopentene (CP), 1,4-cyclohexadiene (CHD), cycloheptene (CHP), cis-cyclooctene (CO), cis,cis-1,5-cyclooctadiene (COD), 1,3,5,7-cyclooctatetraene (COT), cyclododecene (CD), and trans,trans,cis-1,5,9-cyclododecatriene (CDT), was explored using ring-opening metathesis polymerization in the vapor phase. These monomers do not polymerize when SiROMP is carried out in solution because of pronounced chain transfer on surfaces where chains are in close proximity to one another. In the vapor phase, however, chain transfer is suppressed at the solid-vapor interfaces, which permits the polymerization of most of these monomers. A minimal required strain energy of 2.2 kcal/mol was determined in this study, which is significantly lower than the estimated 13.3 kcal/mol for SiROMP carried out in solution, indicating that the enhancement in monomer polymerizability is significant using the vapor-phase approach. A series of polyalkenamers with a controlled fraction of unsaturation from 8 to 50% along the polymer backbone were grafted to solid substrates. It was observed that the logarithm of the largest grafted layer thickness obtained before the removal of chain-transfer products, which correlates with the extent of polymerization, scales with the monomer strain energy. This confirms that the release of ring strain is the thermodynamic driving force for SiROMP. It was also found that although chain transfer is suppressed in the vapor phase it is important in monomer/polymer systems where the fraction of unsaturated bonds is high. In these cases, the grafted polymer thickness is dominated by chain transfer rather than the monomer strain energy. A quantitative relationship is established for estimating the graft thickness of a particular monomer using its strain energy and fraction of unsaturated bonds in the monomer.  相似文献   
9.
A large number of model solutions with high ionic strength were synthesised to mimic industrial conditions and were used as a first approach to study Cd extraction in the presence of chloride at high salinity, as experienced in real industrial solutions. The extractant used throughout in this work was Aliquat 336, a quaternary ammonium salt well known to the hydrometallurgical industry. The effects of some selected anions in addition to chloride (i.e., perchlorate, nitrate, and sulfate) were studied. The distribution of cadmium was measured using 109Cd as a tracer. Liquid-scintillation spectroscopy quantified the concentration of 109Cd in both phases. Raman and NMR spectroscopy were employed to gain further insight into the extraction chemistry. A careful analysis of all Cd extraction data showed that within specific windows of the reactant concentrations the chemical reactions could be represented by simplified equations, as discussed thoroughly in the text. Equilibrium constants for the extraction of \({\text{CdCl}}_{3}^{ - }\) from chloride and chloride/sulfate media were determined to be log10Kext?=?4.9?±?0.8 and log10Kext?=?5.7?±?0.5, respectively. For the nitrate environment, an exchange reaction involving a LiNO3 ion pair is proposed and agrees with the experimental data, but was not proven. 14N-NMR and Raman spectroscopy confirmed that the relative affinity of Aliquat 336 for the relevant anions followed the order: perchlorate?>?nitrate?>?chloride?>?sulfate. Finally, 14N-NMR enabled the equilibrium constant of the exchange reaction between nitrate and chloride for Aliquat 336 to be determined.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号