首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   8篇
化学   33篇
力学   2篇
数学   2篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2015年   2篇
  2014年   10篇
  2013年   2篇
  2012年   3篇
  2011年   5篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2001年   1篇
  1999年   1篇
  1984年   1篇
  1975年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
2.
cis‐2,6‐Tetrahydropyran is an important structural skeleton of bioactive natural products. A facile synthesis of cis‐2,6‐disubstituted‐3,6‐dihydropyrans as cis‐2,6‐tetrahydropyran precursors has been achieved in high regio‐ and stereoselectivity with high yields. This reaction involves a palladium‐catalyzed decarboxylative allylation of various 3,4‐dihydro‐2H‐pyran substrates. Extending this reaction to 1,2‐unsaturated carbohydrates allowed the achievement of challenging β‐C‐glycosylation. Based on this methodology, the total syntheses of (±)‐centrolobine and (+)‐decytospolides A and B were achieved in concise steps and overall high yields.  相似文献   
3.
A thermostable lipase from Geobacillus zalihae strain T1 was chemically modified using propionaldehyde via reductive alkylation. The targeted alkylation sites were lysines, in which T1 lipase possessed 11 residues. Far-UV circular dichroism (CD) spectra of both native and alkylated enzyme showed a similar broad minimum between 208 and 222 nm, thus suggesting a substantial amount of secondary structures in modified enzyme, as compared with the corresponding native enzyme. The hydrolytic activity of the modified enzymes dropped drastically by nearly 15-fold upon chemical modification, despite both the native and modified form showed distinctive α-helical bands at 208 and 222 nm in CD spectra, leading us to the hypothesis of formation of a molten globule (MG)-like structure. As cooperative unfolding transitions were observed, the modified lipase was distinguished from the native state, in which the former possessed a denaturation temperature (T m) in lower temperature range at 61 °C while the latter at 68 °C. This was further supported by 8-anilino-1-naphthalenesulfonic acid (ANS) probed fluorescence which indicated higher exposure of hydrophobic residues, consequential of chemical modification. Based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, a small number of lysine residues were confirmed to be alkylated.  相似文献   
4.
Electrochemical CO2 reduction (CO2R) in acidic media with Cu-based catalysts tends to suffer from lowered selectivity towards multicarbon products. This could in principle be mitigated using tandem catalysis, whereby the *CO coverage on Cu is increased by introducing a CO generating catalyst (e.g. Ag) in close proximity. Although this has seen significant success in neutral/alkaline media, here we report that such a strategy becomes impeded in acidic electrolyte. This was investigated through the co-reduction of 13CO2/12CO mixtures using a series of Cu and CuAg catalysts. These experiments provide strong evidence for the occurrence of tandem catalysis in neutral media and its curtailment under acidic conditions. Density functional theory simulations suggest that the presence of H3O+ weakens the *CO binding energy of Cu, preventing effective utilization of tandem-supplied CO. Our findings also provide other unanticipated insights into the tandem catalysis reaction pathway and important design considerations for effective CO2R in acidic media.  相似文献   
5.
At present, metabolite profiling is of growing importance in herbal medicine fields such as breeding, formulation, quality control and clinical trials. This preliminary study indicated that ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC/TOFMS)-based metabolomics allows direct detection of down-stream derivatives of metabolites, arising from the herbal formulation process. This analytical approach allows the discrimination and tentative authentication of unique biomarkers related to different herbal extracts using unsupervised multivariate principal component analysis (PCA). The tentative identification of biomarkers is complemented significantly by the accurate mass measurement of TOFMS and the high resolution and high retention time reproducibility rendered by UPLC. The application of this approach in herbal extract discrimination and ginsenoside biomarker discovery of raw and steamed Panax notoginseng (Burk.) F.H. Chen is demonstrated and discussed.  相似文献   
6.
J Zeng  YJ Tan  ML Leow  XW Liu 《Organic letters》2012,14(17):4386-4389
A facile synthesis of imidazo[1,2-α]pyridines has been achieved by copper(II) and iron(III) co-catalyzed C-N bond formation. This reaction involves an intermolecular oxidative diamination of alkynes with high chemoselectivity and regioselectivity.  相似文献   
7.
The selective oxidation of sulfides into sulfoxides receives much attention due to industrial and biological applications. However, the realization of this reaction with molecular oxygen at room temperature, which is of importance towards green and sustainable chemistry, remains challenging. Herein, we develop a strategy to achieve the aerobic oxidation of sulfides into sulfoxides by exploring the synergy between a tertiary amine and titanium dioxide via visible-light photoredox catalysis. Specifically, titanium dioxide can interact with triethylamine (TEA) to form a visible-light harvesting surface complex, preluding the ensuing selective redox reaction. Moreover, TEA, whose stability was demonstrated by a turnover number of 32, plays a critical role as a redox mediator by shuttling electrons during the oxidation of sulfide. This work suggests that the addition of a redox mediator is highly functional in establishing visible-light-induced reactions via heterogeneous photoredox catalysis.  相似文献   
8.
Dibutyl phthalate (DBP) produced by Streptomyces sp. H11809 exerted inhibitory activity against human GSK-3β (Hs GSK-3β) and Plasmodium falciparum 3D7 (Pf 3D7) malaria parasites. The current study aimed to determine DBP’s plausible mode of action against Hs GSK-3β and Pf 3D7. Molecular docking analysis indicated that DBP has a higher binding affinity to the substrate-binding site (pocket 2; −6.9 kcal/mol) than the ATP-binding site (pocket 1; −6.1 kcal/mol) of Hs GSK-3β. It was suggested that the esters of DBP play a pivotal role in the inhibition of Hs GSK-3β through the formation of hydrogen bonds with Arg96/Glu97 amino acid residues in pocket 2. Subsequently, an in vitro Hs GSK-3β enzymatic assay revealed that DBP inhibits the activity of Hs GSK-3β via mixed inhibition inhibitory mechanisms, with a moderate IC50 of 2.0 µM. Furthermore, the decrease in Km value with an increasing DBP concentration suggested that DBP favors binding on free Hs GSK-3β over its substrate-bound state. However, the antimalarial mode of action of DBP remains unknown since the generation of a Pf 3D7 DBP-resistant clone was not successful. Thus, the molecular target of DBP might be indispensable for Pf survival. We also identified nocardamine as another active compound from Streptomyces sp. H11809 chloroform extract. It showed potent antimalarial activity with an IC50 of 1.5 μM, which is ~10-fold more potent than DBP, but with no effect on Hs GSK-3β. The addition of ≥12.5 µM ferric ions into the Pf culture reduced nocardamine antimalarial activity by 90% under in vitro settings. Hence, the iron-chelating ability of nocardamine was shown to starve the parasites from their iron source, eventually inhibiting their growth.  相似文献   
9.
The fundamental understanding of the relationship between the nanostructure of an electrode and its electrochemical performance is crucial for achieving high‐performance lithium‐ion batteries (LIBs). In this work, the relationship between the nanotubular aspect ratio and electrochemical performance of LIBs is elucidated for the first time. The stirring hydrothermal method was used to control the aspect ratio of viscous titanate nanotubes, which were used to fabricate additive‐free TiO2‐based electrode materials. We found that the battery performance at high charging/discharging rates is dramatically boosted when the aspect ratio is increased, due to the optimization of electronic/ionic transport properties within the electrode materials. The proof‐of‐concept LIBs comprising nanotubes with an aspect ratio of 265 can retain more than 86 % of their initial capacity over 6000 cycles at a high rate of 30 C. Such devices with supercapacitor‐like rate performance and battery‐like capacity herald a new paradigm for energy storage systems.  相似文献   
10.
A collective synthesis of 4‐hydroxy‐2‐pyridone alkaloids—specifically, pretenellin B, prebassianin B, farinosone A, militarione D, pyridovericin, and torrubiellone C—has been achieved. Key steps include using a strategic convergent method to synthesize the densely substituted pyridone key intermediate by Suzuki–Miyaura cross‐coupling reaction, a divergent synthesis approach of target molecules by aldol condensation of pyridone intermediate with homologous aldehydes, and an iterative synthesis of homologous aldehydes with all‐trans‐polyene backbones. Interestingly, among the six tumor cell lines investigated, torrubiellone C was found to induce potent and apoptotic inhibitory activities on Jurkat T cells with IC50 values of 7.05 μM . Hence, this approach could potentially contribute to the synthesis of bioactive small‐molecule libraries as well as drug discovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号