首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
化学   1篇
  2003年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
We studied the efficacy of the tris-glycinatocobaltate(II) complex ([Co(gly)(3)](-)) as a shift reagent (SR) for chloride by (35)Cl NMR spectroscopy and compared to that of Co(2+)((aq)). Due to the relatively low thermodynamic stability of [Co(gly)(3)](-), a 1:3 Co(II)/gly stoichiometric solution at physiological pH is approximately a 2:1 mixture of [Co(gly)(2)(H(2)O)(2)] and [Co(gly)(H(2)O)(4)](+). This SR was found to be stable up to higher pH values than Co(2+)((aq)), better preventing Co(OH)(2) formation at alkaline pH. No significant differences in the (35)Cl(-) NMR chemical shift induced by Co(II)/gly or Co(2+)((aq)) were observed in the presence of physiological concentrations of either Ca(2+) or Mg(2+), or of either Na(+) or K(+). Although Co(2+)((aq)) was almost twice as effective as Co(II)/gly in shifting the (35)Cl(-) NMR resonance at the same high rho ([SR]/[Cl(-)]) value and low ionic strength, Co(2+)((aq)) showed a significant decrease (p < 0.05) in the (35)Cl(-) chemical shift at higher ionic strength. Line widths at half-height were significantly (p < 0.05) less for Co(II)/gly than for Co(2+)((aq)) at rho values in the range 0.066-0.40. Intracellular chloride was clearly detectable by (35)Cl NMR spectroscopy in human skin fibroblast cells suspended in medium containing 40 mM Co(II)/gly SR. We determined that, although Co(2+)((aq)) provides a larger shift than Co(II)/gly at the same rho value, there are significant advantages for using Co(II)/gly, such as pH stability, ionic strength independent chemical shifts, narrow (35)Cl(-) NMR resonances, and reduced cellular toxicity, as a SR in biological systems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号