首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
化学   18篇
力学   1篇
数学   3篇
物理学   31篇
  2019年   1篇
  2014年   2篇
  2013年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   6篇
  2004年   1篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   5篇
  1991年   4篇
  1989年   2篇
  1987年   1篇
  1976年   2篇
  1973年   1篇
  1970年   1篇
  1954年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
2.
3.
An experimental study of the thermal decomposition of a β‐hydroxy alkene, 3‐methyl‐3‐buten‐1‐ol, in m‐xylene solution, has been carried out at five different temperatures in the range of 513.15–563.15 K. The temperature dependence of the rate constants for the decomposition of this compound in the corresponding Arrhenius equation is given by ln k (s?1) = (25.65 ± 1.52) ? (17,944 ± 814) (kJ·mol?1T?1. A computational study has been carried out at the M05–2X/6–31+G(d,p) level of theory to calculate the rate constants and the activation parameters by the classical transition state theory. There is a good agreement between the experimental and calculated rate constants and activation Gibbs energies. The bonding characteristics of reactant, transition state, and products have been investigated by the natural bond orbital analysis, which provides the natural atomic charges and the Wiberg bond indices. Based on the results obtained, the mechanism proposed is a one‐step process proceeding through a six‐membered cyclic transition state, being a concerted and slightly asynchronous process. The results have been compared with those obtained previously by us (Struct Chem 2013, 24, 1811–1816) for the thermal decomposition of 3‐buten‐1‐ol, in m‐xylene solution. We can conclude that in the compound studied in this work, 3‐methyl‐3‐buten‐1‐ol, the effect of substitution at position 3 by a weakly activating CH3 group is the stabilization of the transition state formed in the reaction and therefore a small increase in the rate of thermal decomposition.  相似文献   
4.
Abstract

Due to the wide use of polymers in medicine, researchers are required to solve a very important problem–to understand the interaction between materials of nonphysiological origin and the surrounding biological liquids, and tissues, particularly blood.  相似文献   
5.
6.
The asymptotic forms of the wavefunction and Faddeev components in configuration space are shown to determine uniquely the solutions of the Schrödinger or Faddeev differential equations for 2 → (2, 3) and 3 → (2, 3) processes. An antisymmetrized form of the Faddeev differential equation for three equivalent fermions is given and its angular analysis is performed in the general case of local potentials with tensor interaction for neutron-deuteron scattering. We describe a numerical method for solving the corresponding boundary value problem and apply it to scattering and break-up at En1ab = 14.4 MeV in the doublet S state for the four local potentials of Malfliet and Tjon, Reid, de Tourreil and Sprung, and de Tourreil, Rouben and Sprung. For the three realistic potentials, elastic scattering amplitudes differ by 5%, and amplitudes for break-up in the two-neutron state 1S0 differ by less than 4%.  相似文献   
7.
The radiation chemical yields of the products derived from the triplet excited state produced in the radiolysis of liquid benzene with gamma-rays, 10 MeV 4He ions, and 10 MeV 12C ions have been determined. Iodine scavenging techniques have been used to examine the formation and role of radicals, especially the H atom and phenyl radical. For all irradiation types examined here, the increase in hydrogen iodide yields with increasing iodine concentration matches the increase in iodobenzene yields. This agreement suggests that the benzene triplet excited state is the common precursor for the H atom and the phenyl radical. Pulse radiolysis studies in liquid benzene have determined the rate coefficients for the reactions of phenyl radicals with iodine and with the solvent benzene to be 9.3 x 10(9) M(-1) s(-1) and 3.1 x 10(5) M(-1) s(-1), respectively. Direct measurements of polymer formation, which refers to trimers (C18) and higher order compounds (>C18), in liquid benzene radiolysis using gamma-rays, 4He ions, and 12C ions at relatively high doses have been performed using gel permeation chromatography. The yields of trimers increase from gamma-rays to 12C ions due to the increased importance of intratrack radical-radical reactions that can be scavenged by the radical scavenging reactions of iodine. On the other hand, the >C18 product yields decrease from gamma-rays to 12C ions. The structure of the polymer consists of a partly saturated ring as determined by infrared and gas chromatography/mass spectrometry studies. A schematic representation for the radiolytic decomposition of the benzene triplet excited state is presented.  相似文献   
8.
The current study provides a way of extraction for both active NSO and WSE from Nigella sativa seeds using 98% methanol. About 1?kg of ground seeds was macerated by 1:2.5 w/v (g/mL) for 72?hours. After rotary evaporation and 7 days of continuous drying and chilling at 50 and 4?°C, NSO and WSE were obtained at the same instant. Solubility tests of 24 solvents and 11 thin layer chromatographic analyses while 2, 2-diphenyl-1-picrylhydrazyl free radical scavenging assay of NSO (73.66) , WSE (33.32) and NSO?+?WSE (78.22) against ascorbic acid (IC50?=?4.28?mg/mL) was performed. WSE was found to be highly soluble in water and 5% NaOH exhibiting the same Rf value of 0.95 for EtOH:DMSO (9:1) against the honey. WSE has revealed more than twofold higher anti-oxidant activity than others. Formulation of WSE with Tualang honey may provide better targeted hydrophilic drug delivery systems.  相似文献   
9.
高聚合度Ⅱ-型聚磷酸铵的合成   总被引:3,自引:0,他引:3  
傅亚  陈君和  贾云  郭莉平 《合成化学》2005,13(6):610-613
用聚合反应-热处理两段工艺合成了高聚合度的聚磷酸铵(APP)阻燃材料,其结构经XRD,粒度及平均聚合度表征。优化反应条件为:磷酸氢二铵1mol,n(磷酸氢二铵):n(五氧化二磷):n(脲):1.0:1.0:0.3.干燥氨气氛下于290℃反应30min,再经250℃-280℃后处理100min-110min。APP的平均聚合度大于150,粒度小于50μm。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号