首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   4篇
  国内免费   1篇
化学   77篇
晶体学   3篇
力学   4篇
数学   12篇
物理学   47篇
  2021年   2篇
  2020年   6篇
  2019年   4篇
  2018年   2篇
  2015年   5篇
  2014年   3篇
  2013年   5篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   6篇
  2004年   2篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  2000年   14篇
  1999年   8篇
  1998年   3篇
  1997年   1篇
  1996年   6篇
  1994年   7篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1928年   2篇
  1922年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Water concentrations in dichloroacetic acid in the range of 0<C <1 % (C = percent by weight) can be determined directly by photometry at 1425 nm. The absorbance A at this maximum is described by the function A=1.267×C0.93 (cell path d=5 cm, correlation coefficient r=0.997). The variation coefficient for water concentrations of ≈0.06% was found to be V=6.5%.  相似文献   
6.
The behavior of (Z)-3-p-tolylsulfinylacrylonitrile (1) as a chiral dienophile has been evaluated from its reactions with furan and acyclic dienes. Electrostatic interactions of the cyano group with the sulfinyl one restrict the conformational mobility around the C-S bond, thus controlling the pi-facial selectivity, which is almost complete in all cases, the approach of the diene from the less-hindered face of the dienophile (that bearing the lone electron pair) in the predominant rotamer being the favored one. The regioselectivity is also completely controlled by the cyano group. Additionally, the reactivity of compound 1 as well as its endo-selectivity are both higher than those observed for the corresponding (Z)-3-sulfinylacrylates, thus proving the potential of sulfinylnitriles as chiral dienophiles.  相似文献   
7.
A catalyzed synthesis of cyclopropanes and cyclobutanes via radical chemistry is described. The method that generally proceeds in high yields uses epoxides as radical precursors and titanocene(III) complexes as the electron transfer catalysts (see scheme). The key to the success of the transformation is constituted by the chemoselectivity of radical reduction. Electrophilic enol radicals generated through cyclization are reduced rapidly whereas their precursors, nucleophilic alkyl radicals, remain unaffected.  相似文献   
8.
Silane coupling agents are commonly applied to glass fibers to promote fiber/resin adhesion and enhance durability in composite parts. In this study, a coupling agent multilayer on glass was doped with trace levels of the dimethylaminonitrostilbene (DMANS) fluorophore. The fluorophore was immobilized on the glass surface by tethering the molecule to a triethoxy silane coupling agent, creating the DMANS/silane coupling agent molecule (DMSCA). DMSCA was then diluted with commonly used coupling agents and grafted to a glass microscope coverslip to create a model composite interface. A 53-nm blue shift in fluorescence from the immobilized DMSCA can be followed during cure of an epoxy resin overlayer, giving this technique potential to monitor the properties of the fiber/resin interface during composite processing. Contact angle measurements on these coupling agent layers were similar in the presence or absence of the DMSCA molecule, suggesting that trace levels of the fluorescent probe did not affect the structure of the layer. The immobilized DMSCA molecule behaved similarly to the DMANS precursor in solution. Both showed longer wavelength fluorescence in more polar environments. Copyright 2000 Academic Press.  相似文献   
9.
The mechanism of titanocene mediated 3-exo cyclizations was investigated by a combined theoretical and experimental study. A gradient corrected density functional theory (DFT) method has been scaled against titanocene dichloride, the parent butenyl radical, and in bond dissociation energy (BDE) calculations. The BP86 method using density fitting, and a basis set of triple-zeta quality emerged as a highly reliable tool for studying titanocene mediated radical reactions. The computational results revealed important kinetic and thermodynamic features of cyclopropane formation. Surprisingly, the beta-titanoxy radicals, the first intermediates of our investigations, were demonstrated to possess essentially the same thermodynamic stabilization as the corresponding alkyl radicals by comparison of the calculated BDEs. In contrast to suggestions for samarium mediated reactions, the cyclization was shown to be thermodynamically favorable in agreement with earlier kinetic studies. It was established that stereoselectivity of the cyclization is governed by the stability of the intermediates and thus the trans disubstituted products are formed preferentially. The observed ratios of products are in good to excellent agreement with the DFT results. By a combination of computational and experimental results, it was also shown that for the completion of the overall cyclopropane formation the efficiency of the trapping of the cyclopropylcarbinyl radicals is decisive.  相似文献   
10.
A series of dinuclear gold σ,π‐propyne acetylide complexes were prepared and tested for their catalytic ability in dual gold catalysis that was based on the reaction of an electrophilic π‐complex of gold with a gold acetylide. The air‐stable and storable catalysts can be isolated as silver‐free catalysts in their activated form. These dual catalysts allow a fast initiation phase for the dual catalytic cycles without the need for additional additives for acetylide formation. Because propyne serves as a throw‐away ligand, no traces of the precatalyst are generated. Based on the fast initiation process, side products are minimized and reaction rates are higher for these catalysts. A series of test reactions were used to demonstrate the general applicability of these catalysts. Lower catalyst loadings, faster reaction rates, and better selectivity, combined with the practicability of these catalysts, make them ideal catalysts for dual gold catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号