首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   6篇
化学   99篇
数学   11篇
物理学   38篇
  2022年   2篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   12篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   8篇
  2007年   2篇
  2006年   4篇
  2005年   6篇
  2004年   5篇
  2003年   3篇
  2002年   7篇
  2001年   4篇
  2000年   10篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   7篇
  1994年   4篇
  1993年   6篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   6篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1969年   1篇
  1898年   1篇
  1880年   2篇
排序方式: 共有148条查询结果,搜索用时 62 毫秒
1.
Nitrene transfer reactions have emerged as one of the most powerful and versatile ways to insert an amine function to various kinds of hydrocarbon substrates. However, the mechanisms of nitrene generation have not been studied in depth albeit their formation is taken for granted in most cases without definitive evidence of their occurrence. In the present work, we compare the generation of tosylimido iron species and NTs transfer from FeII and FeIII precursors where the metal is embedded in a tetracarbene macrocycle. Catalytic nitrene transfer to reference substrates (thioanisole, styrene, ethylbenzene and cyclohexane) revealed that the same active species was at play, irrespective of the ferrous versus ferric nature of the precursor. Through combination of spectroscopic (UV-visible, Mössbauer), ESI-MS and DFT studies, an FeIV tosylimido species was identified as the catalytically active species and was characterized spectroscopically and computationally. Whereas its formation from the FeII precursor was expected by a two-electron oxidative addition, its formation from an FeIII precursor was unprecedented. Thanks to a combination of spectroscopic (UV-visible, EPR, Hyscore and Mössbauer), ESI-MS and DFT studies, we found that, when starting from the FeIII precursor, an FeIII tosyliodinane adduct was formed and decomposed into an FeV tosylimido species which generated the catalytically active FeIV tosylimide through a comproportionation process with the FeIII precursor.  相似文献   
2.
The thermal and dielectric behaviors of poly(vinylidene fluoride-trifluoroethylene) copolymers near the ferroelectric-to-paraelectric phase transition are investigated for samples with 20, 25, 30, and 40 mol% trifluoroethylene (TrFE). The data suggest that the transition becomes continuous for a particular composition near 50 mol% TrFE. Experimental data are sensitive to thermal history (kinetics of crystallization, and kinetics and cycling over the structural transition). It is found that several anomalies are present at the structural change, and in particular the 30 mol% TrFE sample shows the most marked anomalies. These phenomena can be attributed to defects, but another possibility would be the existence of an intemediate supplementary phase. Both hypotheses are discussed.  相似文献   
3.
4.
5.
6.
The dinucleating ligand 2,6-bis[(bis(2-pyridylmethyl)amino)methyl]-4-methylphenol (H-BPMP) has been used to synthesize the three dinuclear Cu(II) complexes [Cu2(BPMP)(OH)][ClO4](2).0.5C4H8O (1), [Cu2(BPMP)(H2O)2](ClO4)(3).4H2O (2), and [Cu2(H-BPMP)][(ClO4)4].2CH3CN (3). X-ray diffraction studies reveal that 1 is a mu-hydroxo, mu-phenoxo complex, 2 a diaqua, mu-phenoxo complex, and 3 a binuclear complex with Cu-Cu distances of 2.96, 4.32, and 6.92 A, respectively. Magnetization measurements reveal that 1 is moderately antiferromagnetically coupled while 2 and 3 are essentially uncoupled. The electronic spectra in acetonitrile or in water solutions give results in accordance with the solid-state structures. 1 is EPR-silent, in agreement with the antiferromagnetic coupling between the two copper atoms. The X-band spectrum of powdered 2 is consistent with a tetragonally elongated square pyramid geometry around the Cu(II) ions, in accordance with the solid-state structure, while the spectrum in frozen solution suggests a change in the coordination geometry. The EPR spectra of 3 corroborate the solid-state and UV-visible studies. The 1H NMR spectra also lead to observations in accordance with the conclusions from other spectroscopies. The electrochemical behavior of 1 and 2 in acetonitrile or in water solutions shows that the first reduction (Cu(II)Cu(II)-Cu(II)Cu(I) redox couple) is reversible and the second (formation of Cu(I)Cu(I) irreversible. In water, 1 and 2 are reversibly interconverted upon acid/base titration (pK 4.95). In basic medium a new species, 4, is reversibly formed (pK 12.0), identified as the bishydroxo complex. Only 1 exhibits catecholase activity (oxidation of 3,5-di-tert-butylcatechol to the corresponding quinone, vmax = 1.1 x 10(-6) M-1 s-1 and KM = 1.49 mM). The results indicate that the pH dependence of the catalytic abilities of the complexes is related to changes in the coordination sphere of the metal centers.  相似文献   
7.
Reactions of Mn(II)(PF(6))(2) and Mn(II)(O(2)CCH(3))(2).4H(2)O with the tridentate facially capping ligand N,N-bis(2-pyridylmethyl)ethylamine (bpea) in ethanol solutions afforded the mononuclear [Mn(II)(bpea)](PF(6))(2) (1) and the new binuclear [Mn(2)(II,II)(mu-O(2)CCH(3))(3)(bpea)(2)](PF(6)) (2) manganese(II) compounds, respectively. Both 1 and 2 were characterized by X-ray crystallographic studies. Complex 1 crystallizes in the monoclinic system, space group P2(1)/n, with a = 11.9288(7) A, b = 22.5424(13) A, c =13.0773(7) A, alpha = 90 degrees, beta = 100.5780(10 degrees ), gamma = 90 degrees, and Z = 4. Crystals of complex 2 are orthorhombic, space group C222(1), with a = 12.5686(16) A, b = 14.4059(16) A, c = 22.515(3) A, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees, and Z = 4. The three acetates bridge the two Mn(II) centers in a mu(1,3) syn-syn mode, with a Mn-Mn separation of 3.915 A. A detailed study of the electrochemical behavior of 1 and 2 in CH(3)CN medium has been made. Successive controlled potential oxidations at 0.6 and 0.9 V vs Ag/Ag(+) for a 10 mM solution of 2 allowed the selective and nearly quantitative formation of [Mn(III)(2)(mu-O)(mu-O(2)CCH(3))(2)(bpea)(2)](2+) (3) and [Mn(IV)(2)(mu-O)(2)(mu-O(2)CCH(3))(bpea)(2)](3+) (4), respectively. These results have shown that each substitution of an acetate group by an oxo group is induced by a two-electron oxidation of the corresponding dimanganese complexes. Similar transformations have been obtained if 2 is formed in situ either by direct mixing of Mn(2+) cations, bpea ligand, and CH(3)COO(-) anions with a 1:1:3 stoichiometry or by mixing of 1 and CH(3)COO(-) with a 1:1.5 stoichiometry. Associated electrochemical back-transformations were investigated. 2, 3, and the dimanganese [Mn(III)Mn(IV)(mu-O)(2)(mu-O(2)CCH(3))(bpea)(2)](2+) analogue (5) were also studied for their ability to disproportionate hydrogen peroxide. 2 is far more active compared to 3 and 5. The EPR monitoring of the catalase-like activity has shown that the same species are present in the reaction mixture albeit in slightly different proportions. 2 operates probably along a mechanism different from that of 3 and 5, and the formation of 3 competes with the disproportionation reaction catalyzed by 2. Indeed a solution of 2 exhibits the same activity as 3 for the disproportionation reaction of a second batch of H(2)O(2) indicating that 3 is formed in the course of the reaction.  相似文献   
8.
The title compound, C58H52Sn3, belongs to the triclinic space group P1, with a 10.165, b 13.365, c 18.670 Å, α 96.28, β 93.88, γ 103.15°, V = 2443.8 Å3, fw = 1105.1, Z = 2, Dcalc 1.501 g cm?3, m.p. 206.5–208°C, λ(Mo-Kα) 0.71069 Å. The structure was refined on 2684 nonzero reflections to an R factor of 0.044. The crystal contains molecules in which the (SnCH2)3CH core possesses an approximate C3 symmetry. The three SnC(H2) bonds are gauche to the C(4)-H bond. Repulsive interactions involving the bulky Ph3Sn substituents lead to large SnC(H2)C(H) angles (av. 117.3°), whereas the C(H2)C(H)C(H2) angles at the tertiary carbon average 111.3°. Little distortion of the Ph3Sn groups themselves is present, since the PhSnPh angles (av. 109.8°) are almost equal to the C(H2)SnPh angles (av. 109.9°). The molecule as a whole has no symmetry because the aromatic rings in the three Ph3Sn groups have different orientations. The phenyl groups create a pocket in the middle of the molecule which encloses and shields the tertiary hydrogen atom. The resulting inaccessibility of this hydrogen accounts in part for the low reactivity of the title compound in redox reactions.  相似文献   
9.
The behavior of (Z)-3-p-tolylsulfinylacrylonitrile (1) as a chiral dienophile has been evaluated from its reactions with furan and acyclic dienes. Electrostatic interactions of the cyano group with the sulfinyl one restrict the conformational mobility around the C-S bond, thus controlling the pi-facial selectivity, which is almost complete in all cases, the approach of the diene from the less-hindered face of the dienophile (that bearing the lone electron pair) in the predominant rotamer being the favored one. The regioselectivity is also completely controlled by the cyano group. Additionally, the reactivity of compound 1 as well as its endo-selectivity are both higher than those observed for the corresponding (Z)-3-sulfinylacrylates, thus proving the potential of sulfinylnitriles as chiral dienophiles.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号