首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   1篇
晶体学   1篇
数学   1篇
物理学   1篇
  2000年   1篇
  1998年   2篇
  1992年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The novel NAD+-linked opine dehydrogenase from a soil isolate Arthrobacter sp. strain 1C belongs to an enzyme superfamily whose members exhibit quite diverse substrate specificites. Crystals of this opine dehydrogenase, obtained in the presence or absence of co-factor and substrates, have been shown to diffract to beyond 1.8 ? resolution. X-ray precession photographs have established that the crystals belong to space group P21212, with cell parameters a = 104.9, b = 80.0, c = 45.5 ? and a single subunit in the asymmetric unit. The elucidation of the three-dimensional structure of this enzyme will provide a structural framework for this novel class of dehydrogenases to enable a comparison to be made with other enzyme families and also as the basis for mutagenesis experiments directed towards the production of natural and synthetic opine-type compounds containing two chiral centres.  相似文献   
2.
3.
The use of solid scavengers in parallel solution-phase organic synthesis is an effective method for work-up and purification. Functionalized macroreticular or gel-form polystyrene particles are generally used for scavenging applications, how ever these materials have some limitations. We have developed new scavenging reagents based on ultrapure silica microspheres displaying a variety of functional groups useful for sequestering impurities from reaction products. These materials are easy to handle, have excellent mass-transfer properties, and are efficient scavengers in both polar and nonpolar organic solvents. The properties of these materials were tailored specifically to fit the needs of a medicinal chemist employing parallel synthesis techniques in current commercial equipment. Results are presented from head-to-head comparisons with conventional scavengers in tests designed to demonstrate the versatility of these new materials.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号