首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   1篇
化学   25篇
物理学   16篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1932年   1篇
  1929年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. "Fast excitation" CID deposits (as determined by the intensity ratio of the a(4)/b(4) ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with "fast excitation" CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for "fast excitation" CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H)(17+) of horse heart myoglobin is also shown to illustrate the application of "fast excitation" CID to proteins.  相似文献   
2.
3.
4.
When graphite is doped with electrons, carbon-carbon bonds lengthen and Raman-active phonons soften as antibonding states fill. However, in semiconducting carbon nanotubes, one Raman-active G-band mode increases in frequency at low doping levels. We show how phase constraints on the conduction-band wave function expose a latent bonding character in the conduction band of certain nanotubes. In these tubes, filling the lowest conduction band shortens the axial bonds even as it lengthens the circumferential bonds. The A{1}{LO} phonon, which preferentially stretches the axial bonds, then hardens even as the other phonons soften. Quantum confinement eliminates the angular averaging taken for granted in higher-dimensional systems and develops a new class of states, neither bonding nor antibonding, whose character depends on the angular orientation of the bonds in question.  相似文献   
5.
We present a new two-plate linear ion trap mass spectrometer that overcomes both performance-based and miniaturization-related issues with prior designs. Borosilicate glass substrates are patterned with aluminum electrodes on one side and wire-bonded to printed circuit boards. Ions are trapped in the space between two such plates. Tapered ejection slits in each glass plate eliminate issues with charge build-up within the ejection slit and with blocking of ions that are ejected at off-nominal angles. The tapered slit allows miniaturization of the trap features (electrode size, slit width) needed for further reduction of trap size while allowing the use of substrates that are still thick enough to provide ruggedness during handling, assembly, and in-field applications. Plate spacing was optimized during operation using a motorized translation stage. A scan rate of 2300 Th/s with a sample mixture of toluene and deuterated toluene (D8) and xylenes (a mixture of o-, m-, p-) showed narrowest peak widths of 0.33 Th (FWHM).
Graphical Abstract ?
  相似文献   
6.
7.
A new technique has been developed which allows the direct measurement of frequencies of ions trapped in a quadrupole ion trap mass spectrometer. This pump/probe method employs a fast direct current (DC) pulse (pump) to displace a kinetically cooled ion population from the center of the trap, and a laser (probe) which recognizes when ions reappear at the center of the trap by the formation of photodissociation fragments. The translationally excited ions undergo periodic motion within the confines of the ion trap, and this periodic motion can be followed by recording the intensity of the photodissociation fragment as a function of the delay time between the DC pump and the laser probe. The DC pulse has a rise time of 15 ns; data are taken 1 ms after its application to allow stable ion motion to be sampled. Sampling of the ion cloud is done at 50 ns intervals, and fast Fourier transformation of the time-based data yields the ion frequencies and their relative magnitudes. Data are reported for ions derived from acetophenone (m/z 105) and 1,4-cyclohexadiene (m/z 80) under various trapping conditions corresponding to different Mathieu qz values. The measured fundamental secular frequencies, fz and fr, are found to agree well with those predicted. The presence of higher order multipole contributions to the trapping field is evident from such ion frequencies as the drive frequency, fRF,. The ability to measure ion frequencies under operating conditions provides a new tool for comparing simulated and experimental data. Simulation data from the program ITSIM, modified to account for the effects of collisions, are shown to predict the major frequency components observed in the experimental data.  相似文献   
8.
9.
Squashing brings circumferentially separated areas of a carbon nanotube into close proximity, drastically altering the low-energy electronic properties and (in some cases) reversing standard rules for metallic versus semiconducting behavior. Such a deformation mode, not requiring motion of tube ends, may be useful for devices. Uniaxial stress of a few kbar can reversibly collapse a small-radius tube, inducing a 0.1 eV gap with a very strong pressure dependence, while the collapsed state of a larger tube is stable. The low-energy electronic properties of chiral tubes are surprisingly insensitive to collapse.  相似文献   
10.
An automated sample preparation system was developed and tested for the rapid detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry (GC–MS) for eventual use in the field. This reactor is capable of automatically processing suspected bio-threat agents to release and derivatize unique chemical biomarkers by thermochemolysis (TCM). The system automatically controls the movement of sample vials from one position to another, crimping of septum caps onto the vials, precise delivery of reagents, and TCM reaction times and temperatures. The specific operations of introduction of sample vials, solid phase microextraction (SPME) sampling, injection into the GC–MS system, and ejection of used vials from the system were performed manually in this study, although they can be integrated into the automated system. Manual SPME sampling is performed by following visual and audible signal prompts for inserting the fiber into and retracting it from the sampling port. A rotating carousel design allows for simultaneous sample collection, reaction, biomarker extraction and analysis of sequential samples. Dipicolinic acid methyl ester (DPAME), 3-methyl-2-butenoic acid methyl ester (a fragment of anthrose) and two methylated sugars were used to compare the performance of the autoreactor with manual TCM. Statistical algorithms were used to construct reliable bacterial endospore signatures, and 24 out of 25 (96%) endospore-forming Bacillus species were correctly identified in a statistically designed test.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号