首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
化学   7篇
物理学   7篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  1999年   2篇
  1995年   1篇
  1991年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
根据目前的技术水平分析了高空天基红外系统(SBIRS-HIGH)的技术参数;理论上计算了SBIRS-HIGH对导弹上升段的位置测量精度以及中末段任意时刻飞行位置的预报精度;研究了SBIRS-HIGH对中段和末端导弹拦截系统的导引能力。  相似文献   
2.
We have measured the scattering angle dependence of cross sections for ionization in p+H2 collisions for a fixed projectile energy loss. Depending on the projectile coherence, interference due to indistinguishable diffraction of the projectile from the two atomic centers was either present or absent in the data. This shows that, due to the fundamentals of quantum mechanics, the preparation of the beam must be included in theoretical calculations. The results have far-reaching implications on formal atomic scattering theory because this critical aspect has been overlooked for several decades.  相似文献   
3.
给出了阻抗谱法确定扩散系数的理论和方法;以钒酸盐阴极材料Na_(1+x)V_3O_(?)(L.T.)为例,应用本方法计算给出了Li~+在阴极中的扩散系数为10~(?)-10~(-9)cm~2·s~(-1);最后还对误差来源进行了讨论. 关键词:  相似文献   
4.
The transfers of hydrophilic ions between aqueous and organic phases are ubiquitous in biological and technological systems. These energetically unfavorable processes can be facilitated either by small molecules (ionophores) or by ion-transport proteins. In absence of a facilitating agent, ion-transfer reactions are assumed to be "simple", one-step processes. Our experiments at the nanometer-sized interfaces between water and neat organic solvents showed that the generally accepted one-step mechanism cannot explain important features of transfer processes for a wide class of ions including metal cations, protons, and hydrophilic anions. The proposed new mechanism of ion transfer involves transient interfacial ion paring and shuttling of a hydrophilic ion across the mixed-solvent layer.  相似文献   
5.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used for the characterization of a partially transesterified poly(beta-hydroxyalkanoate), PHA, polymer produced by the bacterial strain Alcaligenes eutrophus using saponified vegetable oils as the sole carbon sources. The transesterification was carried out separately under acidic and basic conditions to obtain PHA oligomers weighing less than 10 kDa. The intact oligomers were detected in their cationized [M + Na](+) and [M + K](+) forms by MALDI-TOFMS. A composition analysis, using the MALDI-TOF spectra, indicate that the oligomers obtained via acid catalysis were terminated with a methyl 3-hydroxybutyrate end group, and those obtained by base catalysis had a methyl crotonate (olefinic) termination. In addition to HB (hydroxy butyrate), the oligomers were found to contain a small percentage of HV (hydroxy valerate). This was independently confirmed using gas chromatography/mass spectrometry (GC/MS). In comparison, the analysis of a commercial PHA polymer, transesterified under identical conditions, only showed the presence of HB, i.e. a pure PHB homopolymer. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
6.
The main features of methylcyclohexane (mch) and n-heptane (n-C7) transformation at 350°C were compared for fresh samples of HMWW, HMFI and HFAU zeolites. With both reactions, the behavior of HMWW was between those of the medium HMFI and large pore HFAU zeolites. Thus, the values of turnover frequency (TOF) and of the TOFmch/n-C7 ratio were similar with HMWW and HMFI and much higher with HFAU. In contrast, small differences were found between product distributions over HMWW and HFAU but large differences between HMWW and HMFI. These observations can be explained by alkane transformation in the large supercages with 10-MR apertures of HMWW: the narrow apertures limit diffusion of the mch within the supercages, but not the diffusion of the products which are therefore typical of the transformation within large cages hence without any steric limitation.  相似文献   
7.
8.
Nanopipet voltammetry was used for the first study of ion transfer (IT) reactions between aqueous solutions and neat organic solvents. An extremely wide ( approximately 10 V) polarization window obtained with no electrolyte added to the organic phase allows one to probe charge transfer reactions, which are not normally accessible by electrochemical techniques, for example, the transfer of l-alaninamide cation from water to 1,2-dichloroethane (DCE). While anions (e.g., chloride) and relatively hydrophobic cations (e.g., tetraalkylammonium ions) can be transferred from water to less polar neat solvents such as DCE, the transfers of strongly hydrated metal cations occur only in the presence of organic supporting electrolyte.  相似文献   
9.
Molecular partitioning and electron-transfer kinetics have been studied at the ionic liquid/water (IL/water) interface by scanning electrochemical microscopy (SECM). The ionic liquid C8mimC1C1N is immiscible with water and forms a nonpolarizable interface when in contact with it. Partitioning of ferrocene (Fc) across the IL/water interface was studied by SECM and found to be kinetically fast with a partition coefficient CIL/CW of 2400:1. The partition coefficient value was measured by SECM under quasi-steady-state conditions without waiting for complete solute equilibration. To investigate the kinetics of the electron transfer (ET) between aqueous ferricyanide and Fc dissolved in IL, a new approach to the analysis of the SECM current-distance curves was developed to separate the contributions of Fc partitioning and the ET reaction to the tip current. Several combinations of different aqueous and nonaqueous redox species were investigated; however, only the Fc/Fe(CN)63- system behaved according to the Butler-Volmer formalism over the entire accessible potential range.  相似文献   
10.
The fundamentals of and recent advances in scanning electrochemical microscopy (SECM) are described. The focus is on applications of this method to studies of systems and processes of active current interest ranging from nanoelectrochemistry to electron transfer reactions and electrocatalysis to biological imaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号