首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   4篇
化学   26篇
力学   2篇
数学   1篇
物理学   4篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2007年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1980年   1篇
  1969年   1篇
排序方式: 共有33条查询结果,搜索用时 883 毫秒
1.
Lutz GJ  Lafleur PD 《Talanta》1969,16(11):1457-1460
The determination of yttrium in the presence of large amounts of the rare earths by the thermal neutron reaction (89)Y(n, gamma)(90)Y is complicated because of frequent problems of sample self-shielding from major constituents of the sample, and the difficulty of separating (90)Y, a pure beta-emitter, from other elements which are very similar chemically. A non-destructive photon activation analysis method has been developed for this determination. Bremsstrahlung from a 35-muA beam of 35-MeV electrons induces the photonuclear reaction (89)Y(gamma, n)(88)Y. Optimum sensitivity is obtained by coincidence counting of the 0.90 and 1.84 MeV gamma-rays associated with the decay of (88)Y. The detection limit is less than 1 mug of yttrium.  相似文献   
2.
Abstract

We have studied the photooxidation of selected polycyclic aromatic hydrocarbons (PAH) in the presence of Ti(IV)oxide in a mixed solvent system consisting of N-methylpyrrolidinone (NMP) and water. Reaction rates for the photooxidation of acenaphthylene and pyrene were investigated by monitoring the disappearance of the PAH substrate from the reaction mixture as a function of time. For both compounds plots of In Co/Ct, as a function of time yielded straight lines, indicating first order kinetics with respect to the substrate. With an initial acenaphthylene concentration of 1.0 gL?1 the first order reaction rate constant was 0.19 hr?1 and the half life was 3.7 hr. With an initial pyrene concentration of 0.2 gL?1 the first order reaction rate constant was 0.0285 hr?1 and the half life was 24 hr. The photoproducts were characterized by high performance liquid chromatography with diode-array detection (HPLC/DAD) and by liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (APCI/LC-MS). Although a number of simple oxidation products were identified the bulk of the photoproducts consisted of the parent PAH substituted with one or more solvent (NMP) molecules. The product mixtures from the photooxidation of the non-mutagens acenaphthylene and pyrene were found to be also non-mutagenic in our Salmonella typhimurium forward mutation assay.  相似文献   
3.
ABSTRACT

Copolymers of 1,5-dioxepan-2-one (DXO) and e-caprolactone (?-CL), δ-valerolactone (δ-VL) or L-lactide (LLA) have been synthesized and characterized. High molecular weight copolymers were obtained using stannous-2-ethyl hexanoate as catalyst in bulk. Reactivity ratios for the copolymerization of DXO and δ-VL were determined at 110°C as rVL=0.5 and rDXO=2.3. At high conversion, depolymerization of δ-VL occurred, resulting in lower molecular weight and variations in the copolymer composition.

Physical properties, such as crystallinity and melting temperature of the DXO-copolymers proved to be strongly dependent on the choice of comonomer and on the molar composition of the copolymers. DXO appears to be incorporated into the poly-?-caprolactone (PCL) crystals and to some extent into the poly-δ-valerolactone (PVL) crystals, resulting in a more gradual decrease in crystallinity with increasing amount of DXO.  相似文献   
4.
The skin acts mainly as a protective barrier from the external environment, thanks to the stratum corneum which is the outermost layer of the skin. As in vitro tests on skin are essential to elaborate new drugs, the development of skin models closer to reality becomes essential. It is now possible to produce in vitro human skin substitutes through tissue engineering by using the self-assembly method developed by the Laboratoire d’Organogénèse Expérimentale. In the present work, infrared microspectroscopy imaging analyses were performed to get in-depth morpho-spectral characterization of the three characteristic layers of human skin substitutes and normal human skin, namely the stratum corneum, living epidermis, and dermis. An infrared spectral analysis of the skin is a powerful tool to gain information on the order and conformation of the lipid chains and the secondary structure of proteins. On one hand, the symmetric stretching mode of the lipid methylene groups (2,850 cm?1) is sensitive to the acyl chain conformational order. The evolution profile of the frequency of this vibrational mode throughout the epidermis suggests that lipids in the stratum corneum are more ordered than those in the living epidermis. On the other hand, the frequencies of the infrared components underneath the envelop of the amide I band provide information about the overall protein conformation. The analysis of this mode establishes that the proteins essentially adopt an α-helix conformation in the epidermis, probably associated with the presence of keratin, while modifications of the protein content are observed in the dermis (extracellular matrix made of collagen). Finally, the lipid organization, as well as the protein composition in the different layers, is similar for human skin substitutes and normal human skin, confirming that the substitutes reproduce essential features of real skin and are appropriate biomimetics.  相似文献   
5.
We demonstrate that it is possible to form non-phospholipid fluid bilayers in aqueous milieu with a mixture of palmitic acid (PA),cholesterol (Chol),and cholesterol sulfate (Schol) in a molar proportion of 30/28/42.These self-assemblies are shown to be bilayers in the liquid ordered phase.They are stable between pH 5 and 9.Over this pH range,the protonation/deprotonation of PA carboxylic group is observed but this change does not appear to alter the stability of these bilayers,a behavior contrasting with that observed for binary mixtures of PA/Chol,and PA/Schol.The multilamellar dispersions formed spontaneously from the PA/Chol/Schol mixture could be successfully extruded to form Large Unilamellar Vesicles (LUVs).These LUVs show interesting permeability properties,linked with their high sterol content.These non-phospholipid liposomes can sustain a pH gradient (pH internal 8/pH external 6) 100 times longer than LUVs made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol,with a molar ratio of 60/40.Moreover,the non-phospholipid LUVs are shown to protect ascorbic acid from an oxidizing environment (1 mM iron(III)).Once entrapped in liposomes,ascorbic acid displays a degradation rate similar to that obtained in the absence of iron(III).These results show the possibility to form novel nanocontainers from a mixture of a monoalkylated amphiphile and sterols,with a good pH stability and showing interesting permeability properties.  相似文献   
6.
We introduce monosaccharides as versatile water‐soluble units to compatibilise supramolecular polymers based on the benzene‐1,3,5‐tricarboxamide (BTA) moiety with water. A library of monosaccharide‐based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α‐glucose, β‐glucose, α‐mannose and α‐galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one‐dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self‐assembly process is operative and that the introduction of different monosaccharides does not significantly change the self‐ assembly behaviour. Finally, we investigate the potential of post‐assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy.  相似文献   
7.
Results are reported from a study, the goal of which was the reduction of the nonsize effects that govern the size exclusion chromatography (SEC) of planar polycyclic aromatic hydrocarbons (PAHs) on poly(divinylbenzene) (PDVB). Thought to arise from electron-pair donor--electron-pair acceptor (EPD-EPA) interactions between column packing and PAH eluate, nonsize effects could be substantially reduced by the addition of bulky substituents to the PAH, thereby perturbing EPD-EPA interactions between column and eluate. In this work we study the effect of adding a bulky substituent to the column material itself and have selected a sulfonated column material for this purpose. The-SO2OH group provides considerable steric shielding of the PDVB phenyl groups from the PAH eluates and thus its presence could weaken column-eluate interactions, but it is also electron-withdrawing and could possibly aggravate nonsize behavior, because the electron-pair acceptor strength of PDVB could be increased by electron-withdrawing substituents. It was found that either an increase or decrease of EPD-EPA bonding could result with the sulfonated PDVB (S-PDVB) columns, depending on the nature of the mobile phase. Size-dependent elution of PAHs could be obtained with S-PDVB for two classes of PAH by the inclusion of a small amount of hydrogen-bonding solvent, i.e. methanol, to the mobile phase. It is thought that the methanol additive, by strongly hydrogen bonding with the S-PDVB sulfonic acid groups, provides the additional steric shielding necessary to minimize EPD-EPA interactions.  相似文献   
8.
Ethene reactions with niobium atoms and clusters containing up to 25 constituent atoms have been studied in a fast-flow metal cluster reactor. The clusters react with ethene at about the gas-kinetic collision rate, indicating a barrierless association process as the cluster removal step. Exceptions are Nb8 and Nb10, for which a significantly diminished rate is observed, reflecting some cluster size selectivity. Analysis of the experimental primary product masses indicates dehydrogenation of ethene for all clusters save Nb10, yielding either Nb(n)C2H2 or Nb(n)C2. Over the range Nb-Nb6, the extent of dehydrogenation increases with cluster size, then decreases for larger clusters. For many clusters, secondary and tertiary product masses are also observed, showing varying degrees of dehydrogenation corresponding to net addition of C2H4, C2H2, or C2. With Nb atoms and several small clusters, formal addition of at least six ethene molecules is observed, suggesting a polymerization process may be active. Kinetic analysis of the Nb atom and several Nb(n) cluster reactions with ethene shows that the process is consistent with sequential addition of ethene units at rates corresponding approximately to the gas-kinetic collision frequency for several consecutive reacting ethene molecules. Some variation in the rate of ethene pick up is found, which likely reflects small energy barriers or steric constraints associated with individual mechanistic steps. Density functional calculations of structures of Nb clusters up to Nb(6), and the reaction products Nb(n)C2H2 and Nb(n)C2 (n = 1...6) are presented. Investigation of the thermochemistry for the dehydrogenation of ethene to form molecular hydrogen, for the Nb atom and clusters up to Nb6, demonstrates that the exergonicity of the formation of Nb(n)C2 species increases with cluster size over this range, which supports the proposal that the extent of dehydrogenation is determined primarily by thermodynamic constraints. Analysis of the structural variations present in the cluster species studied shows an increase in C-H bond lengths with cluster size that closely correlates with the increased thermodynamic drive to full dehydrogenation. This correlation strongly suggests that all steps in the reaction are barrierless, and that weakening of the C-H bonds is directly reflected in the thermodynamics of the overall dehydrogenation process. It is also demonstrated that reaction exergonicity in the initial partial dehydrogenation step must be carried through as excess internal energy into the second dehydrogenation step.  相似文献   
9.
The phase behavior of mixtures formed by palmitic acid (PA), cholesterol (Chol), and sodium cholesteryl sulfate (Schol) has been characterized by differential scanning calorimetry and infrared and 2H NMR spectroscopy. It is reported that it is possible to form, with PA/sterol mixtures, fluid lamellar phases where the sterol content is very high (a sterol mole fraction of 0.7). As a consequence of the rigidifying ability of the sterols, the PA acyl chains are very ordered. The stability of these self-assembled bilayers is found to be pH-dependent. This property can be controlled by the Chol/Schol molar ratio, and it is proposed that this parameter modulates the balance between the intermolecular interactions between the constituting species. A phase-composition diagram summarizing the behavior of these mixtures as a function of pH, at room temperature, is presented. It is also shown that it is possible to produce large unilamellar vesicles (LUVs) from these mixtures, using standard extrusion techniques. The resulting LUVs display a very limited passive release of the entrapped material. In addition, these LUVs constitute a versatile vector for pH-triggered release.  相似文献   
10.
A suite of keV polyatomic or 'cluster' projectiles was used to bombard unoxidized and oxidized self-assembled monolayer surfaces. Negative secondary ion yields, collected at the limit of single ion impacts, were measured and compared for both molecular and fragment ions. In contrast to targets that are orders of magnitude thicker than the penetration range of the primary ions, secondary ion yields from polyatomic projectile impacts on self-assembled monolayers show little to no enhancement when compared with monatomic projectiles at the same velocity. This unusual trend is most likely due to the structural arrangement and bonding characteristics of the monolayer molecules with the Au(111). Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号