首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   11篇
  2022年   1篇
  2012年   2篇
  2011年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有11条查询结果,搜索用时 265 毫秒
1.
A combination of iridium‐catalyzed C H activation/borylation and atom transfer radical polymerization (ATRP) was used to generate polar graft copolymers of syndiotactic polystyrene (sPS). The borylation at aromatic C H bonds of sPS and subsequent oxidation of boronate ester proceeded without negatively affecting the molecular weight properties and the tacticity of sPS. A macroinitiator suitable for ATRP could be synthesized by the esterification of 2‐bromo‐2‐methylpropionyl bromide and hydroxy‐functionalized sPS. The graft polymerizations of methyl methacrylate and tert‐butyl acrylate from the macroinitiator using ATRP afforded polar block grafted sPS materials, syndiotactic polystyrene‐graft‐poly(methyl methacrylate) (sPS‐g‐PMMA) and syndiotactic polystyrene‐graft‐poly(tert‐butyl acrylate) (sPS‐g‐PtBA). The latter was hydrolyzed to yield an amphiphilic graft copolymer, syndiotactic polystyrene‐graft‐poly(acrylic acid) (sPS‐g‐PAA). The structures of the copolymers were characterized by NMR and FTIR spectroscopies. Size exclusion chromatography and 1H NMR spectroscopy were used to study any changes in the molecular weight properties from the parent polymer. A decrease in the hydrophobicity of the graft copolymers was confirmed by water contact angle measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6655–6667, 2009  相似文献   
2.
A TEMPO‐functionalized isotactic poly(1‐butene) macroinitiator was synthesized via rhodium‐catalyzed activation of the alkane C? H bonds in polyolefin side chain using a boron reagent and subsequent transformations of the boronate ester group in the polymer. These functionalization processes did not induce cross‐linking or degradation of the polymer chains. Nitroxide mediated radical polymerization of dipropyl(4‐vinylphenyl)amine with the macroinitiator produced high‐molecular weight amine‐grafted copolymers of the polyolefin. Adjusting the ratio of polar monomer concentration to macroinitiator concentration controlled the concentrations of amine blocks in the graft copolymers up to 10 mol %. Quaternization of the amine‐grafted copolymers with methyl triflate generated ammonium ion blocks along the side chain of the graft copolymers. A systematic decrease of contact angle in a series of ammonium ion‐grafted copolymers was observed through water contact angle measurements, suggesting that the graft polymerization and the quaternization led to increased hydrophilicity in the polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4519–4531, 2009  相似文献   
3.
Several novel diboronic acid-substituted bipyridinium salts were prepared and, using a fluorescent reporter dye, were tested for their ability to selectively bind various monosaccharides and alpha-hydroxycarboxylates in an aqueous medium. The fluorescence sensing mechanism relies on the formation of a ground-state charge-transfer complex between the dye and bipyridinium. An X-ray crystal structure of this complex is described herein. Glucose selectivity over fructose and galactose was achieved by designing the bipyridinium-based receptors to be capable of attaining a 1:1 receptor/substrate stoichiometry via cooperative diboronic acid binding.  相似文献   
4.
We report a general method for the indium-mediated Barbier-type enantioselective allylation of both aromatic and aliphatic aldehydes using commercially available (1S,2R)-(+)-2-amino-1,2-diphenylethanol as a chiral auxiliary. Using only two equivalents of allyl bromide, excellent yields and very good to excellent enantioselectivities are obtained. To our knowledge, the enantioselectivities reported herein are the highest obtained for indium-promoted allylations of carbonyl compounds.  相似文献   
5.
A method for the enantioselective synthesis of homopropargylic alcohols using indium under Barbier-like conditions is reported herein. Both aromatic and aliphatic aldehydes were successfully converted to the corresponding homopropargylic alcohols in good yield and high enantiomeric excesses using propargyl bromide, indium, and (1S,2R)-(+)-2-amino-1,2-diphenylethanol as a chiral auxiliary.  相似文献   
6.
Hydroxy‐functionalized isotactic poly(1‐butene) was synthesized using transition metal‐catalyzed regioselective C? H borylation at the side chain of the commercial polyolefin and subsequent oxidation of the boronic ester functionality. Functionalization up to ~ 19 mol % of the termini of the ethyl side chain occurred without significant side reactions that could alter the polymer chain length. Esterification of the hydroxy group in the polymer with 2‐bromoisobutyl bromide generated a side chain‐functionalized polyolefin macroinitiator. Atom transfer radical polymerization of tert‐butyl acrylate from the macroinitiator produced a high molecular‐weight graft copolymer of the polyolefin, isotactic poly(1‐butene)‐graft‐poly(tert‐butyl acrylate) (PB‐g‐PtBA). Finally, the hydrolysis of the tert‐butoxy ester group of PB‐g‐PtBA created an amphiphilic polyolefin, isotactic poly(1‐butene)‐graft‐poly(acrylic acid), which contained a short carboxylic acid‐functionalized polymer block at the side chain. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3533–3545, 2008  相似文献   
7.
We report the first one-pot process for the asymmetric addition of allyl, methallyl, and propargyl groups to aldehydes and ketones using B-chlorodiisopinocampheylborane ((d)DIP-Cl) and indium metal. Under Barbier-type conditions, indium metal was used to generate allyl- and allenylindium intermediates, and subsequent reaction with (d)DIP-Cl successfully promoted the transfer of these groups to boron forming the corresponding chiral borane reagents. The newly formed borane reagents were reacted with aldehydes and ketones to produce the corresponding alcohol products in high yields and up to excellent enantioselectivity (98% ee). This method produced excellent enantioenriched secondary homoallylic alcohols from the allylation and methallylation of benzaldehyde. Using this method, the methallylation and cinnamylation of ketones afforded the highest enantioselectivities, while the propargylation of both aldehydes and ketones provided low enantiomeric excesses. In addition, this procedure provided the first synthesis of B-allenyldiisopinocampheylborane, which was characterized by (1)H and (11)B NMR spectroscopy. This is the first example of the direct synthesis of allylboranes that contained substitutions from the corresponding allyl bromide and indium, thereby expanding the utility of the DIP-Cl reagent. Hence, a general and straightforward route to these chiral organoborane reagents in one-pot has been developed along with the asymmetric Barbier-type allylation and propargylation of aldehyde and ketone substrates using these chiral organoborane reagents in subsequent coupling reactions.  相似文献   
8.
In this paper, we report self-assembly of tetrachloroacenes containing pyrazine moieties. The title compounds, phenazine and bisphenazine substituted with four chlorine atoms for increased electron deficiency and alkyloxy side groups for solubility, demonstrated excellent gelation ability in select organic solvents. The assembled structure of these two series of compounds exhibited a morphological difference. Tetrachlorophenazine containing hexadecyloxy side groups induced rigid microbelts, while more extensive entanglement of thinner, more flexible fibers was observed from tetrachlorobisphenazine compounds, characterized by scanning electron microscopy. Tetrachlorophenazine and tetrachlorobisphenazine gels showed quite different emission behavior compared to their solution state. A strong, red-shifted emission compared to that of its diluted solution state was observed from the gel of tetrachlorophenazine. We have ascertained this is a result of J-aggregate formation. From the crystal structure of a model compound, it was found that tetrachlorophenazine cores adopt π-π stacking with a short stacking distance of 3.38 ?, enabling significant intermolecular π-orbital overlap. In addition, the π-cores were displaced longitudinally, indicative of J-aggregate formation. Surprisingly, the gel of tetrachlorobisphenazine showed fluorescence comparable to that of its dilute solution, suggesting that such a close packing of the π-cores may not be possible due to the bulky tert-butyl substituents.  相似文献   
9.
A series of wholly aromatic sulfonated poly(ether amide)s (SPEAs) containing a sulfonic acid group on the dicarbonyl aromatic ring were prepared via a polycondensation reaction of sulfonated terephthalic acid (STA), terephthalic acid (TA), and aromatic diamine monomers. The degree of sulfonation was readily controlled by adjusting the monomer feed ratio of STA and TA in the polymerization process, and randomly sulfonated polymers with an ion exchange capacity (IEC) of 1.0–1.8 mequiv/g were prepared using this protocol. The chemical structures of randomly sulfonated polymers were characterized using NMR and FT‐IR spectroscopies. Gel permeation chromatography analysis of SPEAs indicated the formation of high‐molecular‐weight sulfonated polymer. Tough and flexible SPEA membranes were obtained from solution of N,N‐dimethylacetamide, and thermogravimetric analysis of these membranes showed a high degree of thermal stability. Compared with previously reported sulfonated aromatic polyamides, these new SPEAs showed a significantly lower water uptake of 10–30%. In proton conductivity measurements, ODA‐SPEA‐70 (IEC = 1.80 mequiv/g), which was obtained from polycondensation of 4,4′‐oxydianiline and 70 mol % STA, showed a comparable proton conductivity (105 mS/cm) to that of Nafion 117 at 80 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 485–496, 2009  相似文献   
10.
Lead-free halide perovskite nanocrystals (NCs) represent a group of emerging materials which hold promise for various optical and optoelectronic applications. Exploring facile synthetic methods for such materials has been of great interest to not only fundamental research but also technological implementations. Herein, we report a fundamentally new method to access lead-free Bi-based double perovskite (DP) and quadruple perovskite (or layered double perovskite, LDP) NCs based on a post-synthetic transformation reaction of Cs3BiX6 (X = Cl, Br) zero-dimensional (0D) perovskite NCs under mild conditions. The produced NCs show good particle uniformity, high crystallinity, and comparable optical properties to the directly synthesized NCs. The relatively slow kinetics and stop-on-demand feature of the transformation reaction allow real-time composition–structure–property investigations of the reaction, thus elucidating a cation-alloyed intermediate-assisted transformation mechanism. Our study presented here demonstrates for the first time that post-synthetic transformation of 0D perovskite NCs can serve as a new route towards the synthesis of high-quality lead-free perovskite NCs, and provides valuable insights into the crystal structures, excitonic properties and their relationships of perovskite NCs.

Lead-free perovskite nanocrystals are synthesized by post-synthetic transformation reactions. The post-synthetic transformations show the structural flexibility of zero-dimensional perovskite nanocrystal materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号