首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  国内免费   2篇
化学   14篇
物理学   1篇
  2022年   1篇
  2021年   5篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Wet air oxidation(WAO), a liquid phase reaction between organic materials in water and oxygen, is one of the most economical and technologically viable advanced oxidation processes for wastewater treatment, particularly toxic and high organic content wastewater. WAO is the liquid phase oxidation of organics or oxidizable inorganic components at elevated temperatures(125–320 °C) and pressures(0.5–20 MPa) using gaseous oxygen(or air) as oxidant. In the past two decades, the WAO process was widely studied and applied in the treatment of dye wastewater. Compared to conventional WAO, catalytic WAO processes have higher efficiency and use moderate reaction conditions. The catalysts included homogenous and heterogeneous types. The key points that need to be solved are recycling of homogenous catalysts and better stability of heterogeneous catalysts. In the present review, the technological processes are first introduced, then some research history and hotspots of WAO research are presented, and finally, its application in the treatment of dye wastewater in the past two decades is summarized to reveal the impressive changes in modes, trends, and conditions used. The application includes model pollutant studies and wastewater tests.  相似文献   
2.
High concentrations of antibiotics have been identified in aqueous media, which has diminished the quality of water resources. These compounds are usually highly toxic and have low biodegradability, and there have been reports about their mutagenic or carcinogenic effects. The aim of this study was to apply zero-valent iron-oxide nanoparticles in the presence of hydrogen peroxide and the sonolysis process for the removal of the amoxicillin antibiotic from aqueous media. In this study, zero-valent iron nanoparticles were prepared by an iron chloride reduction method in the presence of sodium borohydride (NaBH4), and the obtained nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating-sample magnetometry (VSM). Then, using a Fenton-like process, synthetic wastewater containing 100 to 500 mg/L amoxicillin antibiotic was investigated, and the effects of different parameters, such as the frequency (1 and 2 kHz), contact time (15 to 120 min), the concentration of hydrogen peroxide (0.3%, 0.5%, and 6%), the dose of zero-valent iron nanoparticles (0.05, 0.1, 0.5 g/L), and pH (3, 5, 10) were thoroughly studied. A pH of 3, hydrogen peroxide concentration of 3%, ultrasonic-wave frequency of 130 kHz, zero-valent iron nanoparticles of 0.5 g/L, and contaminant concentration of 100 mg/L were obtained as the optimal conditions of the combined US/H2O2/nZVI process. Under the optimal conditions of the combined process of zero-valent iron nanoparticles and hydrogen peroxide in the presence of ultrasonic waves, a 99.7% removal efficiency of amoxicillin was achieved in 120 min. The results show that the combined US/H2O2/nZVI process could be successfully used to remove environmental contaminants, including antibiotics such as amoxicillin, with a high removal percentage.  相似文献   
3.
This review is an update about the addition of nanomaterials in cementitious composites in order to improve their performance. The most common used nanomaterials for cementitious materials are carbon nanotubes, nanocellulose, nanographene, graphene oxide, nanosilica and nanoTiO2. All these nanomaterials can improve the physical, mechanical, thermal and electrical properties of cementitious composites, for example increase their compressive and tensile strength, accelerate hydration, decrease porosity and enhance fire resistance. Cement based materials have a very complex nanostructure consisting of hydration products, crystals, unhydrated cement particles and nanoporosity where traditional reinforcement, which is at the macro and micro scale, is not effective. Nanomaterials can reinforce the nanoscale, which wasn’t possible heretofore, enhancing the performance of the cementitious matrix.  相似文献   
4.
The route of a specific drug carrier system is always a significant platform of development that combines the principles of biomedical technology, nanotechnology, and pharmaceutical drug design. Transdermal (TD) drug delivery involves the release of the drug via the stratum corneum of the tissue membrane into the sustained release by diffusion across the epidermal layer. This method (often known as topical drug delivery) has increased noteworthy research enthusiasm in the course of recent decades due to its relatively simpler and non-invasive administration. Over the past few decades, considerable advancement was achieved in TD delivery and a number of drugs are now successfully reported. In this review, we focus on the progress regarding applications of important biopolymers described for the TD drug release applications and related aspects. Three mostly reported plant and animal-derived polymers (such as natural rubber, chitosan, and cellulose for the development of TD carrier system) were extensively analyzed. The general principle of TD drug delivery, advantages, and limitations of the works reported were also discussed.  相似文献   
5.
湿式氧化用于染料废水脱色:过去20年回顾(英文)   总被引:1,自引:0,他引:1  
Wet air oxidation (WAO), a liquid phase reaction between organic materials in water and oxygen, is one of the most economical and technologically viable advanced oxidation processes for wastewater treatment, particularly toxic and high organic content wastewater. WAO is the liquid phase oxidation of organics or oxidizable inorganic components at elevated temperatures (125-320℃) and pressures (0.5-20 MPa) using gaseous oxygen (or air) as oxidant. In the past two decades, the WAO process was widely studied and applied in the treatment of dye wastewater. Compared to conventional WAO, catalytic WAO processes have higher efficiency and use moderate reaction conditions. The catalysts included homogenous and heterogeneous types. The key points that need to be solved are recycling of homogenous catalysts and better stability of heterogeneous catalysts. In the present review, the technological processes are first introduced, then some research history and hotspots of WAO research are presented, and finally, its application in the treatment of dye wastewater in the past two decades is summarized to reveal the impressive changes in modes, trends, and conditions used. The application includes model pollutant studies and wastewater tests.  相似文献   
6.
In this study, three different chitosan microsphere derivatives were prepared as sorbents for basic dyes. Preparation was succeeded by a novel cross-linking method based on ionic gelation with tripolyphosphate and subsequent covalent cross-linking with glutaraldheyde in order to address the large amount of swelling of the powdered form of the respective derivatives. Basic blue 3G (dye) was selected as the sorbate, and chitosan microsheres grafted with acrylamide and acrylic acid were used as biosorbents. Techniques such as FTIR spectroscopy, SEM, and swelling measurements facilitated the evaluation of the materials. Sorption-desorption experiments over the whole pH range were carried out to reveal the optimum value of sorption-desorption. The Langmuir isotherm model was used to fit the equilibrium experimental data, giving a maximum sorption capacity of 0.808 mmol/g at 338 K. An intraparticle diffusion model was employed to fit the kinetic data, and the resulting diffusion coefficients were in the range of (1-10) x 10(-11) m(2)/s. Thermodynamic analysis showed that the sorption process was spontaneous and endothermic with an increased randomness. In addition, sorption experiments were realized with a mixture of three basic dyes at various concentrations of sorbents.  相似文献   
7.
Gums are carbohydrate biomolecules that have the potential to bind water and form gels. Gums are regularly linked with proteins and minerals in their construction. Gums have several forms, such as mucilage gums, seed gums, exudate gums, etc. Plant gums are one of the most important gums because of their bioavailability. Plant-derived gums have been used by humans since ancient times for numerous applications. The main features that make them appropriate for use in different applications are high stabilization, viscosity, adhesive property, emulsification action, and surface-active activity. In many pharmaceutical formulations, plant-based gums and mucilages are the key ingredients due to their bioavailability, widespread accessibility, non-toxicity, and reasonable prices. These compete with many polymeric materials for use as different pharmaceuticals in today’s time and have created a significant achievement from being an excipient to innovative drug carriers. In particular, scientists and pharmacy industries around the world have been drawn to uncover the secret potential of plant-based gums and mucilages through a deeper understanding of their physicochemical characteristics and the development of safety profile information. This innovative unique class of drug products, useful in advanced drug delivery applications, gene therapy, and biosynthesis, has been developed by modification of plant-based gums and mucilages. In this review, both fundamental and novel medicinal aspects of plant-based gums and mucilages, along with their capacity for pharmacology and nanomedicine, were demonstrated.  相似文献   
8.
Abstract

Biomedicine and pharmacy identify highly important scientific fields within the present time. However, increased advancements in these sciences have influenced the identification of increased levels in environmental degradation through pollution. Pharmaceutical production has influenced increased scientific and public concern regarding the increasing rate of pollution attributed to high levels of toxicological properties within the products. Pharmaceutical compounds are not fully removed through the integration of wastewater treatment plants (WWTP). This renders pharmaceutical compounds, municipal effluents together with hospitals as the major culprits in the development of the majority of the sources that enhance environmental degradation. A wide range of the compounds have been the identified within WWTP effluents, surface water together with ground and drinking water on a global scale. All above has influenced the research development in technological field developing new ways for efficient removal of pharmaceuticals from wastewater produced from the pharmaceuticals or biomedical industries. This situation may be altered through the utilization of adsorbents. Therefore more studies have been published investigating the use of nanocomposite biomaterials for removing the pharmaceutical compounds existing in biomedical effluents.  相似文献   
9.
The preparation of phenylsulfonyl indene derivatives and phenylsulfonyl- acetylenes from readily available alkynyl(phenyl)iodonium tetrafluoroborates and triflates was investigated using phenylsulfinate as nucleophile.  相似文献   
10.
The threat of the accumulation of heavy metals in wastewater is increasing, due to their abilities to inflict damage to human health, especially in the past decade. The world’s environmental agencies are trying to issue several regulations that allow the management and control of random disposals of heavy metals. Scientific studies have heavily focused on finding suitable materials and techniques for the purification of wastewaters, but most solutions have been rejected due to cost-related issues. Several potential materials for this objective have been found and have been compared to determine the most suitable material for the purification process. Sawdust, among all the materials investigated, shows high potential and very promising results. Sawdust has been shown to have a good structure suitable for water purification processes. Parameters affecting the adsorption mechanism of heavy metals into sawdust have been studied and it has been shown that pH, contact time and several other parameters could play a major role in improving the adsorption process. The adsorption was found to follow the Langmuir or Freundlich isotherm and a pseudo second-order kinetic model, meaning that the type of adsorption was a chemisorption. Sawdust has major advantages to be considered and is one of the most promising materials to solve the wastewater problem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号