首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  1999年   2篇
  1995年   1篇
排序方式: 共有3条查询结果,搜索用时 937 毫秒
1
1.
The kinetics and even the mechanism of cement reaction with water can be successfully investigated by use of microcalorimetry. In this study this method was applied to follow the hydration of the new family of portland cements containing C12A7 * and C11A7·CaF2 addition as well as special cement with C3A replacement by calcium sulphoaluminate. It has been found that C11A7·CaF2 acted as hydration retarder. The heat evolution curves for C12A7 containing samples without CaF2 are very similar to those for the reference portland cement samples. XRD and SEM studies confirm the results described above, relating to the retardation of alite hydration. The process is positively modified by the addition of anhydrite. In the presence of calcium sulphoaluminate (4CaO·3Al2O3·SO3) the hydration at early stage occurs with the rapid formation of large amount of the ettringite phase. The calcium fluoride acts as a set retarder. The full compatibility of calorimetry with SEM and XRD results should be underlined. In cement chemistry the following notation is used:C=CaO,A=Al2O3,S=SiO2,H=H2O etc. for the main oxide constituents of portland cement clinker and hydrates.  相似文献   
2.
Use of a short rotary kiln with a cyclone preheater allowed the internal recirculation of volatile constituents, essentially consisting of compounds of potassium, chlorine and sulphur. These compounds underwent partial condensation on the raw material grains, composed mainly of calcite. The increasing concentration of volatile constituents created convenient conditions for the crystallization of new phases, particularly sylvite. Beautiful crystals of this phase were formed, probably by the VLS mechanism. Thermal analysis revealed that a liquid phase was formed in the system at the relatively low temperature of about 630°C, which enhanced the reaction of silica with calcium carbonate, and spurrite was formed. Thus, the build-ups were composed mainly of calcite, sylvite and spurrite, and in some cases also of calcium oxide and anhydrite. Sulphospurrite, gehlenite, calcium langbeinite, dicalcium silicate and calcium aluminate, 12CaO·7Al2O3 were found as minor components. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
3.
The capillary porosity of clinker phases, i.e. 3CaOSiO2, β2CaOSiO2, 3CaOAl2O3 and 4CaOAl2O3Fe2O3, at the early stages of hydration has been studied by the methods of Differential Scanning Calorimetry and nitrogen adsorption (BET). It was established that pores of 3–70 nm were formed during the hydration of 3CaOSiO2 and the maximum of their distribution was found at about 10 nm. The hydration of 2CaOSiO2 is much slower and the porosity is one order of magnitude lower. During the hydration of 3CaOAl2O3 the content of crystalline hexagonal hydrates prevailed and the porosity was in the range 5–90 nm with the average pore diameter of about 16 nm. This average pore diameter was much smaller for thermoporosimetry and lay at about 7 nm. The hydrated 4CaOAl2O3Fe2O3 sample had the porosity in the range 3–90 nm with the maximum of the pores distribution at about 4 nm. There are some differences between the porosities measured by BET and thermoporosimetry. Principally thermoporosimetry gives no information about larger capillary pores in the range 30–50 nm. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号