首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   2篇
晶体学   1篇
物理学   2篇
  2023年   1篇
  2012年   1篇
  2010年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Several polymerizable hydroquinone derivatives were prepared by the Williamson synthesis. Thus, hydroquinone mono(p-vinylbenzyl) ether (III-1), hydroquinone methyl p-vinylbenzyl ether (III-4), and hydroquinone benzyl p-vinylbenzyl ether (III-5), tert-butylhydroquinone mono(p-vinylbenzyl) ether (III-2), and 2,5-di-tert-butylhydroquinone mono(p-vinylbenzyl) ether (III-3) were synthesized by the reactions of p-chloromethylstyrene with the corresponding hydroquinone derivatives in alcoholic potassium hydroxide or with their potassium salts in dipolar aprotic solvents. All monomers were found to polymerize by free-radical initiation except III-3, which required a cationic initiator.  相似文献   
2.
Surface structural changes of a hydrogenated diamond-like carbon (DLC) film exposed to a hyperthermal atomic oxygen beam were investigated by Rutherford backscattering spectroscopy (RBS), synchrotron radiation photoelectron spectroscopy (SR-PES), and near-edge X-ray absorption fine structure (NEXAFS). It was confirmed that the DLC surface was oxidized and etched by high-energy collisions of atomic oxygen. RBS and real-time mass-loss data showed a linear relationship between etching and atomic oxygen fluence. SR-PES data suggested that the oxide layer was restricted to the topmost surface of the DLC film. NEXAFS data were interpreted to mean that the sp2 structure at the DLC surface was selectively etched by collisions with hyperthermal atomic oxygen, and an sp3-rich region remained at the topmost DLC surface. The formation of an sp3-rich layer at the DLC surface led to surface roughening and a reduced erosion yield relative to the pristine DLC surface.  相似文献   
3.
Amorphous carbon nitride (a-CNx) films were formed from the decomposition of BrCN in the electron cyclotron resonance plasmas of He, Ne, and Ar. The local structures of these films were investigated by the carbon-K near edge X-ray absorption fine structure. It was found that the density of C=C bond in the film prepared with Ar plasma was 7–9 times larger than that with He or Ne plasmas. The [N]/([C] + [N]) ratios of films were estimated from the X-ray photoelectron spectra as 0.34 ± 0.05, 0.35 ± 0.04, and 0.28 ± 0.05 for the He, Ne, and Ar plasmas, respectively. It was found that C atoms in the sp2-hybridized state were incorporated into the two-dimensional and/or one-dimensional conjugated structures composed of ? C=N? in the cases of the He and Ne plasmas and of ? C=C? in the case of the Ar plasma. The compositions and the local structures of films can be explained in terms of a model based on the cyclazine-like network structures.  相似文献   
4.
The Knight shift and the spin-lattice relaxation time of 7Li in lithium-ammonia solutions have been measured at -57°C over the concentration range XLi = 0.01–0.20 (XLi: mole fraction of Li). The Knight shift increases with increasing metal concentration, while the relaxation rate, 1/T1, shows a broad minimum around XLi = 0.07.  相似文献   
5.
Microenvironmental factors, including substrate stiffness, regulate stem cell behavior and differentiation. However, the effects of substrate stiffness on the behavior of induced pluripotent stem cell (iPSC)- derived embryoid bodies (EB) remain unclear. To investigate the effects of mechanical cues on iPSC-EB differentiation, a 3D hydrogel-sandwich culture (HGSC) system is developed that controls the microenvironment surrounding iPSC-EBs using a stiffness-tunable polyacrylamide hydrogel assembly. Mouse iPSC-EBs are seeded between upper and lower polyacrylamide hydrogels of differing stiffness (Young's modulus [E’] = 54.3 ± 7.1 kPa [hard], 28.1 ± 2.3 kPa [moderate], and 5.1 ± 0.1 kPa [soft]) and cultured for 2 days. HGSC induces stiffness-dependent activation of the yes-associated protein (YAP) mechanotransducer and actin cytoskeleton rearrangement in the iPSC-EBs. Moreover, moderate-stiffness HGSC specifically upregulates the mRNA and protein expression of ectoderm and mesoderm lineage differentiation markers in iPSC-EBs via YAP-mediated mechanotransduction. Pretreatment of mouse iPSC-EBs with moderate-stiffness HGSC promotes cardiomyocyte (CM) differentiation and structural maturation of myofibrils. The proposed HGSC system provides a viable platform for investigating the role of mechanical cues on the pluripotency and differentiation of iPSCs that can be beneficial for research into tissue regeneration and engineering.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号