首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
化学   26篇
物理学   4篇
  2020年   3篇
  2019年   1篇
  2015年   1篇
  2012年   3篇
  2011年   3篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1986年   2篇
  1985年   1篇
  1981年   1篇
  1975年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
In heat exchange calorimetry, sample and reference vessels are fixed differentially in a water bath. The heat evolved in the sample vessel is exchanged freely with the ambient water. The accuracy and precision of the calorimetry depend on the temperature range of the drift and fluctuation in the bath water. In the present report, a simple temperature-control system with no empirical factors is proposed for the precision water bath. The heat exchange between the inside of the vessels and the ambient water is expressed by a differential equation or a Newtonian cooling equation. Similarly, the thermal behaviour of a water bath placed in a non-air-conditioned laboratory was also considered to be expressed by the same equation. The heat exchanged with the surroundings, the non-stationary heat flow from warm stirrer motors, and other thermal factors were considered to be part of the heat sources. Cooling water about 2°C lower than the set temperature was circulated in the water bath. The difference between the set temperature and the observed temperature was fed into a microcomputer every second. The latest four data points were used to fit a modified Newtonian equation by the common method of least-squares. The control input to the bath was calculated and given to the heater circuit after power amplification. The program written in basic was about 3.3 kbyte. The controlled range of drift and fluctuation was almost the same, or better, as that previously reported.  相似文献   
2.
The dinuclear copper enzyme, tyrosinase, activates O2 to form a (μ-η22-peroxido)dicopper(II) species, which hydroxylates phenols to catechols. However, the exact mechanism of phenolase reaction in the catalytic site of tyrosinase is still under debate. We herein report the near atomic resolution X-ray crystal structures of the active tyrosinases with substrate l -tyrosine. At their catalytic sites, CuA moved toward l -tyrosine (CuA1 → CuA2), whose phenol oxygen directly coordinates to CuA2, involving the movement of CuB (CuB1 → CuB2). The crystal structures and spectroscopic analyses of the dioxygen-bound tyrosinases demonstrated that the peroxide ligand rotated, spontaneously weakening its O−O bond. Thus, the copper migration induced by the substrate-binding is accompanied by rearrangement of the bound peroxide species so as to provide one of the peroxide oxygen atoms with access to the phenol substrate's ϵ carbon atom.  相似文献   
3.
4.
5.
Copper(II) complexes 1a and 1b, supported by tridentate ligand bpa [bis(2-pyridylmethyl)amine] and tetradentate ligand tpa [tris(2-pyridylmethyl)amine], respectively, react with cumene hydroperoxide (CmOOH) in the presence of triethylamine in CH(3)CN to provide the corresponding copper(II) cumylperoxo complexes 2a and 2b, the formation of which has been confirmed by resonance Raman and ESI-MS analyses using (18)O-labeled CmOOH. UV-vis and ESR spectra as well as DFT calculations indicate that 2a has a 5-coordinate square-pyramidal structure involving CmOO(-) at an equatorial position and one solvent molecule at an axial position at low temperature (-90 °C), whereas a 4-coordinate square-planar structure that has lost the axial solvent ligand is predominant at higher temperatures (above 0 °C). Complex 2b, on the other hand, has a typical trigonal bipyramidal structure with the tripodal tetradentate tpa ligand, where the cumylperoxo ligand occupies an axial position. Both cumylperoxo copper(II) complexes 2a and 2b are fairly stable at ambient temperature, but decompose at a higher temperature (60 °C) in CH(3)CN. Detailed product analyses and DFT studies indicate that the self-decomposition involves O-O bond homolytic cleavage of the peroxo moiety; concomitant hydrogen-atom abstraction from the solvent is partially involved. In the presence of 1,4-cyclohexadiene (CHD), the cumylperoxo complexes react smoothly at 30 °C to give benzene as one product. Detailed product analyses and DFT studies indicate that reaction with CHD involves concerted O-O bond homolytic cleavage and hydrogen-atom abstraction from the substrate, with the oxygen atom directly bonded to the copper(II) ion (proximal oxygen) involved in the C-H bond activation step.  相似文献   
6.
Tools for selective recognition and sensing of specific phosphorylated tyrosine residues on the protein surface are essential for understanding signal transduction cascades in the cell. A stable complex of RNA and peptide, a ribonucleopeptide (RNP), provides effective approaches to tailor RNP receptors and fluorescent RNP sensors for small molecules. In vitro selection of an RNA-derived pool of RNP afforded RNP receptors specific for a phosphotyrosine residue within a defined amino-acid sequence Gly-Tyr-Ser-Arg. The RNP receptor for the specific phosphotyrosine residue was successfully converted to a fluorescent RNP sensor for sequence-specific recognition of a phosphorylated tyrosine by screening a pool of fluorescent phosphotyrosine-binding RNPs generated by a combination of the RNA subunits of phosphotyrosine-binding RNPs and various fluorophore-modified peptide subunits. The phosphotyrosine-binding RNP receptor and fluorescent RNP sensor constructed from the RNP receptor not only discriminated phosphotyrosine against tyrosine, phosphoserine, or phosphothreonine, but also showed specific recognition of amino acid residues surrounding the phosphotyrosine residue. A fluorescent RNP sensor for one of the tyrosine phosphorylation sites of p100 coactivator showed a binding affinity to the target site ~95-fold higher than the other tyrosine phosphorylation site. The fluorescent RNP sensor has an ability to function as a specific fluorescent sensor for the phosphorylated tyrosine residue within a defined amino-acid sequence in HeLa cell extracts.  相似文献   
7.
Lipase and amylase inhibitory activities of black tea were examined. After solvent partitioning of a black tea extract with the ethyl acetate and n-butanol, the two soluble fractions showed comparable inhibitory activities. Activity in the ethyl acetate fraction was mainly attributable to polyphenols with low-molecular weights, such as theaflavin gallates. On the other hand, the active substance in the n-butanol layer was ascertained to be a polymer-like substance. 1H- and 13C-NMR spectra showed signals arising from the flavan A-ring and galloyl groups, although signals due to flavan B-rings were not detected, suggesting that the polymer-like substances were generated by oxidative condensation of flavan B-rings, a result which was previously deduced from our results of in vitro catechin oxidation experiments. Enzymatic oxidation of epicatechin 3-O-gallate produced a similar polymer-like substance and suggested that condensation between a B-ring and galloyl groups was involved in the polymerization reaction.  相似文献   
8.
To find novel PPAR ligands, we prepared several 3-{3 or 4-[2-(nonylpyridin-2-ylamino)ethoxy]phenyl}propanoic acid derivatives which were designed based on the structure of our previous PPARgamma ligand 1. In PPAR binding affinity assays, compound 4, which had an ethoxy group at the C-2 position of the propanoic acid of 1, showed selective binding affinity for PPARgamma. Compound 3, with an ethyl group at the C-2 position, was found to be a PPARalpha/gamma dual ligand. Compound 6, the meta isomer of 1, has been shown to be a PPARalpha ligand. The introduction of methyl (7) and ethyl (8) groups to the C-2 position of the propanoic acid of 6 further improved PPARalpha-binding potency. In cell-based transactivation assay, compounds 3 and 4 showed dual-agonist activity toward PPARalpha and PPARgamma. Compound 6 was found to be a triple agonist and compound 8 proved to be a selective PPARalpha agonist. In the human hypodermic preadipocyte differentiation test, it was demonstrated that the maximal activity of compounds 3 and 4 was higher than that of rosiglitazone.  相似文献   
9.
A mononuclear copper(II) superoxo species has been invoked as the key reactive intermediate in aliphatic substrate hydroxylation by copper monooxygenases such as peptidylglycine α-hydroxylating monooxygenase (PHM), dopamine β-monooxygenase (DβM), and tyramine β-monooxygenase (TβM). We have recently developed a mononuclear copper(II) end-on superoxo complex using a N-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane tridentate ligand, the structure of which is similar to the four-coordinate distorted tetrahedral geometry of the copper-dioxygen adduct found in the oxy-form of PHM (Prigge, S. T.; Eipper, B. A.; Mains, R. E.; Amzel, L. M. Science2004, 304, 864-867). In this study, structures and physicochemical properties as well as reactivity of the copper(I) and copper(II) complexes supported by a series of tridentate ligands having the same N-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane framework have been examined in detail to shed light on the chemistry dictated in the active sites of mononuclear copper monooxygenases. The ligand exhibits unique feature to stabilize the copper(I) complexes in a T-shape geometry and the copper(II) complexes in a distorted tetrahedral geometry. Low temperature oxygenation of the copper(I) complexes generated the mononuclear copper(II) end-on superoxo complexes, the structure and spin state of which have been further characterized by density functional theory (DFT) calculations. Detailed kinetic analysis on the O(2)-adduct formation reaction gave the kinetic and thermodynamic parameters providing mechanistic insights into the association and dissociation processes of O(2) to the copper complexes. The copper(II) end-on superoxo complex thus generated gradually decomposed to induce aliphatic ligand hydroxylation. Kinetic and DFT studies on the decomposition reaction have suggested that C-H bond abstraction occurs unimolecularly from the superoxo complex with subsequent rebound of the copper hydroperoxo species to generate the oxygenated product. The present results have indicated that a superoxo species having a four-coordinate distorted tetrahedral geometry could be reactive enough to induce the direct C-H bond activation of aliphatic substrates in the enzymatic systems.  相似文献   
10.
Towards the synthesis of sterically hindered optically active secondary alcohol 2, yeast strains (Candida floricola IAM 13115 and Trichosporon cutaneum IAM 12206) with si-face hydride attack on isopropyl phenylsulfonylmethyl ketone 1 were developed by screening. Strains with complementary re-facial selectivity (Pichia angusta IAM 12895 and Pichia minuta IAM 12215) were also found. Based on the substrate specificity studies of these four strains, microbial reduction was applied to the synthesis of (3S,5S)-2,6-dimethyl-3,5-heptanediol 12a.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号