首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   528篇
  免费   8篇
  国内免费   2篇
化学   391篇
晶体学   5篇
力学   9篇
数学   41篇
物理学   92篇
  2023年   2篇
  2021年   4篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   9篇
  2014年   6篇
  2013年   24篇
  2012年   13篇
  2011年   25篇
  2010年   15篇
  2009年   11篇
  2008年   28篇
  2007年   22篇
  2006年   35篇
  2005年   27篇
  2004年   28篇
  2003年   34篇
  2002年   27篇
  2001年   9篇
  2000年   11篇
  1999年   9篇
  1998年   14篇
  1997年   9篇
  1996年   5篇
  1995年   10篇
  1994年   4篇
  1993年   4篇
  1992年   10篇
  1991年   4篇
  1990年   9篇
  1989年   10篇
  1988年   7篇
  1987年   7篇
  1986年   3篇
  1985年   9篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   8篇
  1980年   5篇
  1979年   10篇
  1978年   11篇
  1977年   8篇
  1976年   2篇
  1975年   5篇
  1974年   4篇
  1971年   2篇
  1968年   2篇
排序方式: 共有538条查询结果,搜索用时 15 毫秒
1.
2.
A new method for the construction of the AB-ring core of Taxol was developed utilizing a new skeletal transformation protocol as a pivotal step. The acid-catalyzed rearrangement of the cyclopentenone-allene photoadduct gave a bridged seven-membered ketone, which was easily transformed, using the intramolecular Suzuki reaction and the oxidative cleavage of the vicinal diol, to the bicyclic diketone.  相似文献   
3.
Quantitative analysis of metal cation doping by solid oxide electrochemical doping (SOED) has been performed under galvanostatic doping conditions. A M–β″-Al2O3 (M=Ag, Na) microelectrode (contact radius: about 10 μm) was used as cation source to attain a homogeneous solid–solid contact between the β″-Al2O3 and doping target. In Ag doping into alkali borate glass, the measured dopant amount closely matched the theoretical value. High Faraday efficiencies of above 90% were obtained. This suggests that the dopant amount can be precisely controlled on a micromole scale by the electric charge during electrolysis. On the other hand, current efficiencies of Na doping into Bi2Sr2CaCu2Oy (BSCCO) ceramics depended on the applied constant current. Efficiencies of above 80% were achieved at a constant current of 10 μA (1.6 A cm−2). The relatively low efficiencies were explained by the saturation of BSCCO grain boundaries with Na. By contrast, excess Na was detected on the anodic surface of ceramics at a constant current of 100 μA (16 A cm−2). In the present study, we demonstrate that SOED enables micromole-scale control over dopant amount.  相似文献   
4.
We investigated the structures induced by an irradiation of a near‐infrared (NIR) femtosecond laser pulse in dye‐doped polymeric materials {poly(methyl methacrylate) (PMMA), thermoplastic epoxy resin (Epoxy), and a block copolymer of methyl methacrylate and ethyl acrylate‐butyl acrylate [p(MMA/EA‐BA) block copolymer]}. Dyes used were classified into two types—type 1 with absorption at 400 nm and type 2 with no absorption at 400 nm. The 400‐nm wavelength corresponds to the two‐photon absorption region by the irradiated NIR laser pulse at 800 nm. Type 1 dye‐doped PMMA and p(MMA/EA‐BA) block copolymer showed a peculiar dye additive effect for the structures induced by the line irradiation of a NIR femtosecond laser pulse. On the contrary, dye‐doped Epoxy did not exhibit a dye additive effect. The different results among PMMA, p(MMA/EA‐BA) block copolymer, and Epoxy matrix polymers are supposed to be related to the difference of electron‐acceptor properties. The mechanism of this type 1 dye‐additive‐effect phenomenon for PMMA and p(MMA/EA‐BA) block copolymer is discussed on the basis of two‐photon absorption of type 1 dye at 400 nm by the irradiation of a femtosecond laser pulse with 800 nm wavelength and the dissipation of the absorbed energy to the polymer matrix among various transition processes. Dyes with a low‐fluorescence quantum yield favored the formation of thicker grating structures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2800–2806, 2002  相似文献   
5.
Mercury vapor is effectively absorbed via inhalation and easily passes through the blood–brain barrier; therefore, mercury poisoning with primarily central nervous system symptoms occurs. Metallothionein (MT) is a cysteine-rich metal-binding protein and plays a protective role in heavy-metal poisoning and it is associated with the metabolism of trace elements. Two MT isoforms, MT-I and MT-II, are expressed coordinately in all mammalian tissues, whereas MT-III is a brain-specific member of the MT family. MT-III binds zinc and copper physiologically and is seemed to have important neurophysiological and neuromodulatory functions. The MT functions and metal components of MTs in the brain after mercury vapor exposure are of much interest; however, until now they have not been fully examined. In this study, the influences of the lack of MT-I and MT-II on mercury accumulation in the brain and the changes of zinc and copper concentrations and metal components of MTs were examined after mercury vapor exposure by using MT-I, II null mice and 129/Sv (wild-type) mice as experimental animals. MT-I, II null mice and wild-type mice were exposed to mercury vapor or an air stream for 2 h and were killed 24 h later. The brain was dissected into the cerebral cortex, the cerebellum, and the hippocampus. The concentrations of mercury in each brain section were determined by cold vapor atomic absorption spectrometry. The concentrations of mercury, copper, and zinc in each brain section were determined by inductively coupled plasma mass spectrometry (ICP-MS). The mercury accumulated in brains after mercury vapor exposure for MT-I, II null mice and wild-type mice. The mercury levels of MT-I, II null mice in each brain section were significantly higher than those of wild-type mice after mercury vapor exposure. A significant change of zinc concentrations with the following mercury vapor exposure for MT-I, II null mice was observed only in the cerebellum analyzed by two-way analysis of variance. As for zinc, the copper concentrations only changed significantly in the cerebellum. Metal components of metal-binding proteins of soluble fractions in the brain sections were analyzed by size-exclusion high-performance liquid chromatography (HPLC) connected with ICP-MS. From the results of HPLC/ICP-MS analyses, it was concluded that the mercury components of MT-III and high molecular weight metal-binding proteins in the cerebellum of MT-I, II null mice were much higher than those of wild-type mice. It was suggested that MT-III is associated with the storage of mercury in conditions lacking MT-I, and MT-II. It was also suggested that the physiological role of MT-III and some kind of high molecular weight proteins might be impaired by exposure to mercury vapor and lack of MT-I and MT-II.  相似文献   
6.
The applicability of headspace solid-phase microextraction (HS-SPME) to pesticide determination in water samples was demonstrated by evaluating the effects of temperature on the extraction of the pesticides. The evaluations were performed using an automated system with a heating module. The 174 pesticides that are detectable with gas chromatograph were selected objectively and impartially based on their physical properties: vapor pressure and partition coefficient between octanol and water. Of the 174 pesticides, 158 (90% of tested) were extracted with a polyacrylate-coated fiber between 30 and 100 degrees C and were determined with gas chromatograph-mass spectrometry. The extraction-temperature profiles of the 158 extracted pesticides were obtained to evaluate the effects of temperature on the extraction of pesticides. The pesticides were classified into four groups according to the shape of their extraction-temperature profiles. The line of demarcation between extractable pesticides and non-extractable pesticides could be drawn in the physical property diagram (a double logarithmic plot of their vapor pressure and partition coefficient between octanol and water). The plot also revealed relationships between classified extraction features and their physical properties. The new method for multi residue screening in which the analytes were categorized into sub-groups based on extraction temperature was developed. In order to evaluate the quantitivity of the developed method, the 45 pesticides were chosen among the pesticides that are typically monitored in waters. Linear response data for 40 of the 45 was obtained in the concentration range below 5 microg/l with correlation coefficients ranging between 0.979 and 0.999. The other five pesticides had poor responses. Relative standard deviations at the concentration of the lowest standard solution for each calibration curve of the pesticides ranged from 3.6 to 18%. The value of 0.01 microg/l in the limits of detection for 17 pesticides was achieved only under the approximate conditions for screening, not under the individually optimized conditions for each pesticide. Recoveries of tested pesticides in actual matrices were essentially in agreement with those obtained by solid-phase extraction.  相似文献   
7.
2,3,7,8-Substituted polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs) and non-ortho-substituted polychlorinated biphenyls (PCBs) account for almost all of the total toxic equivalents (TEQ) in environmental samples. Activated carbon columns are used to fractionate the samples for GC-MS analysis or bioassay. Micropore-free surface-activated carbon is highly selective for PCDD/Fs and non-ortho-PCBs and can improve the conventional activated carbon column clean-up. Along with sulfuric acid-coated diatomaceous earth columns, micropore-free surface-activated carbon provides a rapid, robust, and high-throughput sample preparation method for PCDD/Fs and non-ortho-PCBs analysis.  相似文献   
8.
A parallel-plate flow chamber consisting of two transparent electro-conductive glass plates was constructed. The two glass plates were set parallel to each other and connected to a potentiostat apparatus to regulate the strength of the electric field between the plates. A microbial cell suspension was flowed through the chamber. This system enabled the application of an electrostatic force to suspend charged particles, e.g. microbial cells, existing between the two plates. The time course of the cell attachment of Pseudomonas syringae pv. atropurpurea NIAES 1309 suspended in 10 mM phosphate buffer solution (pH 7.0) to the glass plate was investigated at various electric field strengths ranging from −4.2 to +4.1 V cm−1. The attachment rate and the maximum number of attached cells increased linearly with the increase in the strength of the positive electric field. In contrast, the rate and the number of cells decreased linearly with the decrease in the strength of the negative electric field. These linear relations gave a specific value for the strength of the electric field (−5.9 ± 0.7 V cm−1) where the electrostatic repulsion and the microbial attachment force were thought to be equal, resulting in no cell attachment. From this value, the electrostatic repulsion, i.e. the microbial attachment force, was calculated to be 5.0 × 10−11 N cell−1 for cells of average size.  相似文献   
9.
The structure of iron oxide was controlled by regulating the hydrolytic polymerization of aquo iron complexes with organic polydentate ligands such as diols. Iron oxides were prepared by calcining the precursor polymers obtained from iron nitrate nonahydrate and diols. When the diols were 1,2-pentanediol, 1,2-hexanediol and 1,2-octanediol, α-Fe2O3 with corundum structure appeared exclusively or as the main crystalline phase, in spite of the amount of diol used and the calcination temperature. In the case of 1,2-decanediol and 1,2-dodecanediol, when five moles of the diols were used to one mole of iron nitrate and the calcination temperatures were below 400°C, ψ-Fe2O3 with spinel structure appeared as the main phase and, when less than five moles of the diols were used, α-Fe2O3 appeared exclusively or as the main phase, irrespective of the calcination temperature. This tendency was also observed in thin films. Thus, a transparent magnetic film composed of γ-Fe2O3 could be prepared by applying a benzene solution of the iron polymer, obtained with 5 equivalents of 1,2-decanediol, on quartz and calcining the gel film at 350°C.  相似文献   
10.
The dispersive component s d of the surface free energy of glass fibers and its interaction energy with alkanes, benzene, 1-nitropropane, ethyleneglycol, glycerol, formamide, and water were quantitatively determined by the tensiometric method within two liquids. The values of nondispersive interaction energy I SL p were found to be a linear function of the square root of the nondispersive component of the surface free energy of liquids. This suggests that the nondispersive interaction energy may be represented by the geometric mean of the nondispersive component of the surface free energy of a solid and a liquid. The slope gave the nondispersive component s p of the surface free energy. The s p values are 33 and 14 mJ/m2 for the untreated and aminosilane-treated fibers, respectively, suggesting that organophilic character has developed on the surface after aminosilane treatment. The s p value was almost similar after the treatment, probably because of the polar characteristics of amino groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号