首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
化学   40篇
物理学   2篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2011年   5篇
  2010年   8篇
  2009年   2篇
  2008年   5篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
The formation of host-guest complexes between dimeric cyclophane zinc diphenylporphyrinates and bidentate ligands of different nature containing two nitrogen atoms has been studied by the spectrophotometric titration method and 1H NMR spectroscopy in a toluene-methanol (2: 1) binary solvent. The complexation of these dimeric porphyrinates with 1,4-diazabicyclo[2,2,2]octane or pyrazine can lead to 1: 1 or 1: 2 complexes, depending on the metalloporphyrin-to-ligand molar ratio. The stability constants of the porphyrinate-ligand complexes and concentration ranges of their formation have been determined.  相似文献   
2.
Cobalt(II) and zinc(II) complexes with 5,15-di(o-methoxyphenyl)-3,7,13,17-tetramethyl-2,8,12,18-tetra-n-buthylporphyrin and its capped analogues, where the MN4 reaction site is shielded by bridging groups containing m-phenylene and dimethoxy-substitutedp-phenylene fragments, were synthesized. Equilibrium constants of additional coordination of pyridine and N-methylimidazole by these metalloporphyrins were determined at 298 K. It was found that steric distortion of the porphyrin core destabilizes extra complexes.  相似文献   
3.
Spectral properties and chemical stability of Mn(III), Mn(IV), Fe(III), Fe(IV), and Cu(III) complexes of β-octabromotriphenylcorrole [(β-Br)8(ms-Ph)3Cor], synthesized from β-unsubstituted compounds by their reaction with molecular bromine, were studied. Cyclic voltammetry, electron microscopy, and X-ray spectral microanalysis were used to obtain electrochemical characteristics of metal corroles M(β-Br)8(ms-Ph)3Cor and gain insight into the surface texture of active catalysts on the basis of metal corroles. The electron-acceptor β-bromine substitution in the MCor macrocycle shifts the equilibrium in electron-donor solvents to lower oxidation states of the metals and also stabilizes manganese and destabilizes copper complexes in the protondonor medium HOAc-H2SO4. The electrocatalytic activity of the complexes in the reduction of molecular oxygen depends on the nature of the ligand and increases in the order Mn ≤ Cu ? Fe in the case of β-octabrominated macrocycles. The character of distribution of active centers on the surface of the catalysts was established for the first time.  相似文献   
4.
For the first time the interactions between zinc(II)tetra-4-alkoxybenzoyloxiphthalocyanine (Zn(4—O—CO—C6H4—OC11H23)Pc) and 1,4-diazabicyclo[2.2.2]octane (DABCO) in o-xylene and chloroform have been studied by calorimetric titration and NMR and electron absorption spectroscopic methods. It has been found that in o-xylene at concentrations of Zn(4—O—CO—C6H4—OC11H23)Pc higher than 6×10−4 mol⋅L−1 ππ dimers species are formed (λ max= 685 nm). Additions of DABCO to the solution up to mole ratio 1 : 8 (Zn(4—O—CO—C6H4—OC11H23)Pc : DABCO) lead to a shift of the aggregation equilibrium towards monomer species due to formation of monoligand axial complexes. Further increasing the DABCO concentration results in formation of Zn(4—O—CO—C6H4—OC11H23)Pc—DABCO—Zn(4—O—CO—C6H4—OC11H23)Pc sandwich dimers (λ max= 675 nm).  相似文献   
5.
Chemical shifts (c.s.) of 1H nuclei in methanol are measured for methanol-benzene and methanol-phenanthrene systems. A method to determine the equilibrium constant of the molecular association reaction by NMR spectroscopy data is proposed for systems with low solubility of a compound when the dependence of c.s. on the composition is close to a straight line. The equilibrium constants for the formation of molecular complexes in methanol-benzene and methanol-phenanthrene systems are found.  相似文献   
6.
Complex formation of α- and β-cyclodextrins with isoniazid, a antituberculous pharmaceutical, is studied using such methods as calorimetry and 1H NMR at 298.15 K. On the basis of the obtained experimental data, it is shown that α- and β-cyclodextrins form 1 : 1 inclusion complexes with isoniazid, which are characterized by low stability in aqueous solution. Along with this, deeper penetration of isoniazid into the cavity of β-cyclodextrin, accompanied by more intensive dehydration of the reagents, is observed. The results are interpreted in terms of influence of structure of reagents and their state in solution on the binding mode, driving forces, and thermodynamic parameters of the complex formation.  相似文献   
7.
Inclusion complex formation of hydroxypropylated α-, β- and γ-cyclodextrins with riboflavin (vitamin B2) and alloxazine was studied by spectroscopic and solubility methods. Alloxazine, which is a structural analog of riboflavin, was considered in order to evaluate the role of ribityl and methyl substituents in complexation. Thermodynamic parameters for 1:1 complex formation were obtained and analyzed in terms of influence of the reagent structure on the binding process. It was shown that the cavity of hydroxypropyl-β-cyclodextrin is more appropriate for formation of stable complexes. The complexes are enthalpy stabilized, due to prevalence of van der Waals interactions and possible hydrogen bonding. The partial insertion of riboflavin into the cyclodextrin cavity was revealed by 1H NMR and computer modeling. The ribityl side chain, which prevents deep inclusion, is located nearby the wider rim of the cyclodextrin molecule and can undergo destruction. Penetration of the alloxazine molecule into the macrocyclic cavity is deeper and accompanied by formation of more stable inclusion complexes. Hydroxypropyl-β-cyclodextrin was found to be the more efficient solubilizing agent for riboflavin and alloxazine, whereas a stabilization action of cyclodextrins towards riboflavin was not observed.  相似文献   
8.
The formation of mixed-ligand complexes in the M(II)–Nta and Ida–L systems (M = Co, Zn; L = His, Orn, Lys, Gly, Im, en), where Ida and Nta are the residues of iminodiacetic and nitrilotriacetic acids, was studied by pH-metry, calorimetry, and NMR spectroscopy. The thermodynamic parameters (logK, Δ r G0, Δ r H, Δ r S) of formation for these complexes were determined at 298.15 K and an ionic strength I = 0.5 (KNO3). The most probable pattern of coordination between a complexone and an amino acid in mixed-ligand complexes was revealed.  相似文献   
9.
Hydrogen-bonded complexes of acetylsalicylic acid with polar co-solvents in supercritical carbon dioxide, modified by methanol, ethanol, and acetone of 0.03 mole fraction concentration, are studied by numerical methods of classical molecular dynamics simulation and quantum chemical calculations. The structure, energy of formation, and lifetime of hydrogen-bonded complexes are determined, along with their temperature dependences (from 318 to 388 K at constant density of 0.7 g cm?3). It is shown that the hydrogen bonds between acetylsalicylic acid and methanol are most stable at 318 K and are characterized by the highest value of absolute energy. At higher supercritical temperatures, however, the longest lifetime is observed for acetylsalicylic acid–ethanol complexes. These results correlate with the known literature experimental data showing that the maximum solubility of acetylsalicylic acid at density values close to those considered in this work and at temperatures of 318 and 328 K is achieved when using methanol and ethanol as co-solvents, respectively.  相似文献   
10.
Four new unsymmetrically substituted porphyrins have been synthesized using 10-aryl-a,c-biladiene dihydrobromide as key intermediate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号