首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1019篇
  免费   23篇
  国内免费   2篇
化学   750篇
晶体学   74篇
力学   17篇
数学   86篇
物理学   117篇
  2022年   7篇
  2021年   10篇
  2020年   13篇
  2019年   10篇
  2017年   9篇
  2016年   17篇
  2015年   20篇
  2014年   25篇
  2013年   37篇
  2012年   40篇
  2011年   44篇
  2010年   28篇
  2009年   38篇
  2008年   51篇
  2007年   45篇
  2006年   47篇
  2005年   41篇
  2004年   38篇
  2003年   48篇
  2002年   26篇
  2001年   16篇
  2000年   24篇
  1999年   19篇
  1998年   16篇
  1997年   14篇
  1996年   19篇
  1995年   11篇
  1994年   19篇
  1993年   15篇
  1992年   14篇
  1991年   19篇
  1990年   10篇
  1989年   10篇
  1988年   7篇
  1987年   10篇
  1986年   13篇
  1985年   15篇
  1984年   11篇
  1983年   14篇
  1981年   13篇
  1980年   9篇
  1979年   11篇
  1978年   8篇
  1977年   6篇
  1976年   16篇
  1975年   13篇
  1974年   8篇
  1973年   10篇
  1969年   6篇
  1968年   10篇
排序方式: 共有1044条查询结果,搜索用时 15 毫秒
1.
Solvent‐dependent ultraviolet–visible (UV–vis) absorption and Stokes shifts including strong hydrogen‐bond‐donating (HBD) solvents such as 2,2,2‐trifluoroethanol and 1,1,1,3,3,3‐hexafluoro‐2‐propanol of two coumarine dyes (Co 151 and Co 153) were analyzed with multiple‐square analyses of linear solvation energy relationships and the Kamlet–Taft solvent parameter set to α (HBD capacity), β (hydrogen‐bond‐accepting capacity), and π* (dipolarity/polarizability). The UV–vis absorption and emission spectra of Co 151 and Co 153 were measured when adsorbed on various polysaccharides such as different cellulose batches, carboxymethylcelluloses with different degrees of substitution, and chitine. As a result of this evaluation, Co 153 is recommended as an alternative UV–vis probe for evaluating the dipolarity/polarizability of cellulose and cellulose derivates. Multiple adsorption of Co 153 on Linters cellulose took place indicating a wide‐surface polarity distribution, which makes the determination of a rigid polarity parameter questionable. Thus, fluorescence measurements of adsorbed Co 153 are suitable to detect inhomogenities on a surface but not for the determination of empirical polarity parameters. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1210–1218, 2003  相似文献   
2.
3.
4.
In this paper total cross sections for signals and backgrounds of top- and Higgs-production channels in e + e- collisions at a future linear collider are presented. All channels considered are characterized by the emergence of six-particle final states. The calculation takes into account the full set of tree-level amplitudes in each process. Two multi-purpose parton level generators, HELAC/PHEGAS and AMEGIC + + , are used, and their results are found to be in perfect agreement.Received: 26 November 2003, Revised: 15 January 2004, Published online: 3 March 2004  相似文献   
5.
The primary objective of this investigation was to document fluctuations of levels of ions in airborne particles and in rain water with the help of ion chromatography. The environmental emission situation in the investigated geographic area is characterized by a widespread use of domestic coal-burning furnaces. The use of a parallel impactor for particulate sampling permits the results to be interpreted additionally in terms of particle size. The anions and cations were extracted from the filters in the sampling devices into ethanol-water mixtures by sonication. Rain water samples were analysed after a simple dilution step. The data obtained on ionic fluctuations are compared with similar data sets published by other laboratories.  相似文献   
6.
The reactions of LnI2 (Ln = Nd (1) or Dy (2)) with cyclopentadiene (CpH) in THF at 0 °C afforded the CpLnI2(THF)3 complexes in 65—67% yields. The reaction of thulium diiodide (3) with an excess of CpH at 60 °C produced CpTmI2(THF)3, Cp2TmI(THF)2, and TmI3(THF)3 in 21, 58, and 63% yields, respectively. The reactions of 1 and 2 with pentamethylcyclopentadiene (Cp*H) in THF were accompanied by disproportionation giving rise to the Cp*2LnI(THF)2 and LnI3(THF) x complexes. Neodymium triiodide was isolated in the ionic form [NdI2(THF)5]+[NdI4(THF)2]. Its structure and the structure of CpTmI2(THF)3 were established by X-ray diffraction analysis.  相似文献   
7.
Using reaction rate data collected in aprotic solvents, we have determined that the Baylis-Hillman rate-determining step is second order in aldehyde and first order in DABCO and acrylate. On the basis of these data, we have proposed a new mechanism involving a hemiacetal intermediate. The proposed mechanism was then supported using two different kinetic isotope experiments.  相似文献   
8.
Solubilization environment afforded by several of the novel allyl glycidyl ether-modified methylhydrosiloxane polymers are investigated using a common polycyclic aromatic hydrocarbon fluorescence probe, pyrene. The backbone of the polymer has been modified by the addition of an alkyl chain of varying length (either C8, C12, or C18) and to differing degrees of substitution. The nomenclature adopted for the purposes of these studies is as follows: "AGENT" represents the backbone polymer with no alkyl substitution, and "OAGENT", "DAGENT", and "SAGENT" are substituted with n-octyl, n-dodecyl, and n-octadecyl, respectively. The percentage of alkyl substitution is designated as 10, 15, and 20%. The pyrene polarity scale (defined as the ratio of the intensity of peak I to peak III) was used to determine the relative dipolarity of the cybotactic region provided by approximately 1 w/w% aqueous polymer solutions compared to 10 mM sodium dodecylsulfate (SDS) micellar solution. Results indicate that 10-15% DAGENT afforded the most hydrophobic solubilization site, followed by 15% OAGENT and 15% SAGENT. In addition, as the degree of alkyl substitution of DAGENT increased from 10 to 20%, the cybotactic region appeared to become more hydrophobic. Furthermore, a deeper investigation into the relative size of the solubilization site revealed that all alkyl-substituted polymers promoted excimer formation at relatively low pyrene concentrations, indicating the possibility of localized concentration enhancement within the solvation pockets and/or compartmentalization of the solute molecules. The pyrene fluorescence excitation data strongly indicates ground-state heterogeneity that is most prominent in AGENT and decreases as the alkyl chain length is increased. This provides a relative sense of the size and shape of the solvation pockets afforded by each polymer solution. An overall analysis of the collected data indicated that these alkyl-substituted polymers may provide a more selective and efficient pseudostationary phase in electrokinetic chromatography with better solvation capacity for hydrophobic compounds compared to SDS.  相似文献   
9.
A broad collection of technologies, including e.g. drug metabolism, biofuel combustion, photochemical decontamination of water, and interfacial passivation in energy production/storage systems rely on chemical processes that involve bond-breaking molecular reactions. In this context, a fundamental thermodynamic property of interest is the bond dissociation energy (BDE) which measures the strength of a chemical bond. Fast and accurate prediction of BDEs for arbitrary molecules would lay the groundwork for data-driven projections of complex reaction cascades and hence a deeper understanding of these critical chemical processes and, ultimately, how to reverse design them. In this paper, we propose a chemically inspired graph neural network machine learning model, BonDNet, for the rapid and accurate prediction of BDEs. BonDNet maps the difference between the molecular representations of the reactants and products to the reaction BDE. Because of the use of this difference representation and the introduction of global features, including molecular charge, it is the first machine learning model capable of predicting both homolytic and heterolytic BDEs for molecules of any charge. To test the model, we have constructed a dataset of both homolytic and heterolytic BDEs for neutral and charged (−1 and +1) molecules. BonDNet achieves a mean absolute error (MAE) of 0.022 eV for unseen test data, significantly below chemical accuracy (0.043 eV). Besides the ability to handle complex bond dissociation reactions that no previous model could consider, BonDNet distinguishes itself even in only predicting homolytic BDEs for neutral molecules; it achieves an MAE of 0.020 eV on the PubChem BDE dataset, a 20% improvement over the previous best performing model. We gain additional insight into the model''s predictions by analyzing the patterns in the features representing the molecules and the bond dissociation reactions, which are qualitatively consistent with chemical rules and intuition. BonDNet is just one application of our general approach to representing and learning chemical reactivity, and it could be easily extended to the prediction of other reaction properties in the future.

Prediction of bond dissociation energies for charged molecules with a graph neural network enabled by global molecular features and reaction difference features between products and reactants.  相似文献   
10.
Accurate data on transport properties such as viscosity are essential in plant and process design involving ionic liquids. In this study, we determined the absolute viscosity of the ionic liquid + water system at water mole fractions from 0 to 0.25 for three 1-alkyl-3-methylimidazolium ionic liquids: 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide and 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide. In each case, the excimer to monomer ratio for 1,m-bis(1-pyrenyl)alkanes (m= 3 or 10) was found to increase linearly with the mole fraction of water. Of the probes studied only PRODAN and rhodamine 6G, both of which have the ability to participate in hydrogen bonding, exhibited Perrin hydrodynamic behavior in the lower viscosity bis(trifluoromethane sulfonyl)imides. As a result, these probes allow for the extrapolation of the absolute viscosity of the ionic liquid mixture from the experimental fluorescence steady-state polarization values.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号