首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   1篇
化学   73篇
晶体学   1篇
力学   1篇
数学   2篇
物理学   5篇
  2023年   4篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2013年   6篇
  2012年   4篇
  2011年   6篇
  2010年   5篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   4篇
  2005年   7篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1995年   2篇
  1994年   1篇
排序方式: 共有82条查询结果,搜索用时 62 毫秒
1.
(Methacryloyl ethylenedioxycarbonyl) benzyl N,N‐diethyldithiocarbamate (HEMA‐E‐In) was synthesized and used as a monomer iniferter to develop a novel, photopatternable grafting technology. This molecule functions as both a methacrylic monomer and a photoiniferter (photoinitiator–transfer agent–terminator). The structure of HEMA‐E‐In was characterized by 1H NMR, Fourier transform infrared, and ultraviolet–visible spectroscopies. In the presence of the monomer iniferter, methyl methacrylate was polymerized by exposure to 365‐nm ultraviolet radiation, confirming the initiation capability of HEMA‐E‐In. After the copolymerization of HEMA‐E‐In into a methacrylate‐based polymer, attenuated total reflectance Fourier transform infrared spectra revealed that the photoiniferter functionality was present at the surface of this polymeric substrate. Photografting of poly(ethylene glycol) monomethacrylate monomer from the surface caused a significant change in the hydrophobicity of the surface as demonstrated by contact angle measurements. The novel monomer photoiniferter HEMA‐E‐In initiates the polymerization of bulk monomer and provides a reactive functionality that facilitates further initiation and polymer modification by the polymerization of different monomers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1885–1891, 2002  相似文献   
2.
This paper presents the synthesis and characterization of pyridine-substituted artificial oligopeptides with an aminoethylglycine backbone of varying length, which are designed to act as scaffolds for the self-assembly of multimetallic structures. The identities and purities of the oligopeptides are confirmed with mass spectrometry, (1)H NMR, HPLC, and pH titrations. The acid dissociation constants for the oligopeptides were determined and were found to decrease with increasing pyridine units. Titrations of the oligopeptides with Cu(II) and Pt(II) complexes containing the tridentate ligands 2,2':6',2'-terpyridine and pyridine 2,6-dicarboxylic acid were monitored using UV-visible absorption spectroscopy and showed stoichiometric binding based on the number of pyridines on the peptide strand. Metal titrations performed using an analogous oligopeptide with methyl substituents (in place of the pyridine ligands) showed very weak or no binding. In the case of the oligopeptides containing bound Pt(terpyridine)(2+) complexes, cyclic voltammetry reveals two sequential one-electron reductions at formal potentials that do not vary as a function of oligopeptide length. The measured diffusion coefficients were measured with chronoamperometry and were found to decrease with increasing oliopeptide length.  相似文献   
3.
The biological role of selenium is a subject of intense current interest, and the antioxidant activity of selenoenzymes is now known to be dependent upon redox cycling of selenium within their active sites. Exogenously supplied or metabolically generated organoselenium compounds, capable of propagating a selenium redox cycle, might therefore supplement natural cellular defenses against the oxidizing agents generated during metabolism. We now report evidence that selenium redox cycling can enhance the protective effects of organoselenium compounds against oxidant-induced DNA damage. Phenylaminoethyl selenides were found to protect plasmid DNA from peroxynitrite-mediated damage by scavenging this powerful cellular oxidant and forming phenylaminoethyl selenoxides as the sole selenium-containing products. The redox properties of these organoselenoxide compounds were investigated, and the first redox potentials of selenoxides in the literature are reported here. Rate constants were determined for the reactions of the selenoxides with cellular reductants such as glutathione (GSH). These kinetic data were then used in a MatLab simulation, which showed the feasibility of selenium redox cycling by GSH in the presence of the cellular oxidant, peroxynitrite. Experiments were then carried out in which peroxynitrite-mediated plasmid DNA nick formation in the presence or absence of organoselenium compounds and GSH was monitored. The results demonstrate that GSH-mediated redox cycling of selenium enhances the protective effects of phenylaminoethyl selenides against peroxynitrite-induced DNA damage.  相似文献   
4.
Bio-orthogonal tetrazine click reactions have recently attracted significant interest for applications spanning biological imaging, cancer targeting, and biomaterials science. Here, we report a simple and efficient two-step scheme for the synthesis of an asymmetric tetrazine molecule containing a carboxylic acid handle for subsequent macromolecular conjugation. Yields as high as 75% were achieved using as little as 0.005 equiv of nickel triflate catalyst, which is a significant improvement over previous methodologies.  相似文献   
5.
Collagen is the most abundant protein in mammals, and there has been long-standing interest in understanding and controlling collagen assembly in the design of new materials. Collagen-like peptides (CLPs), also known as collagen-mimetic peptides (CMPs) or collagen-related peptides (CRPs), have thus been widely used to elucidate collagen triple helix structure as well as to produce higher-order structures that mimic natural collagen fibers. This mini-review provides an overview of recent progress on these topics, in three broad topical areas. The first focuses on reported developments in deciphering the chemical basis for collagen triple helix stabilization, which we review not with the intent of describing the basic structure and biological function of collagen, but to summarize different pathways for designing collagen-like peptides with high thermostability. Various approaches for producing higher-order structures via CLP self-assembly, via various types of intermolecular interaction, are then discussed. Finally, recent developments in a new area, the production of polymer–CLP bioconjugates, are summarized. Biological applications of collagen contained hydrogels are also included in this section. The topics may serve as a guide for the design of collagen-like peptides and their bioconjugates for targeted application in the biomedical arena.  相似文献   
6.
Local, micromechanical environment is known to influence cellular function in heterogeneous hydrogels, and knowledge gained in micromechanics will facilitate the improved design of biomaterials for tissue regeneration. In this study, a system comprising microstructured resilin‐like polypeptide (RLP)–poly(ethylene glycol) (PEG) hydrogels is utilized. The micromechanical properties of RLP‐PEG hydrogels are evaluated with oscillatory shear rheometry, compression dynamic mechanic analysis, small‐strain microindentation, and large‐strain indentation and puncture over a range of different deformation length scales. The measured elastic moduli are consistent with volume averaging models, indicating that volume fraction, not domain size, plays a dominant role in determining the low strain mechanical response. Large‐strain indentation under a confocal microscope enables the visualization of the microstructured hydrogel micromechanical deformation, emphasizing the translation, rotation, and deformation of RLP‐rich domains. The fracture initiation energy results demonstrate that failure of the composite hydrogels is controlled by the RLP‐rich phase, and their independence with domain size suggested that failure initiation is controlled by multiple domains within the strained volume. This approach and findings provide new quantitative insight into the micromechanical response of soft hydrogel composites and highlight the opportunities in employing these methods to understand the physical origins of mechanical properties of soft synthetic and biological materials.  相似文献   
7.
8.
A stereocontrolled route to the deschloro cyclopentyl core of the palau'amines and styloguanidines has been developed. This strategy makes use of the intramolecular Pauson-Khand cyclization of an enyne with a "transient N-O tether" to construct a five-membered carbocycle in a diastereoselective fashion. [reaction: see text]  相似文献   
9.
Elastomeric proteins are characterized by their large extensibility before rupture, reversible deformation without loss of energy, and high resilience upon stretching. Motivated by their unique mechanical properties, there has been tremendous research in understanding and manipulating elastomeric polypeptides, with most work conducted on the elastins but more recent work on an expanded set of polypeptide elastomers. Facilitated by biosynthetic strategies, it has been possible to manipulate the physical properties, conformation, and mechanical properties of these materials. Detailed understanding of the roles and organization of the natural structural proteins has permitted the design of elastomeric materials with engineered properties, and has thus expanded the scope of applications from elucidation of the mechanisms of elasticity to the development of advanced drug delivery systems and tissue engineering substrates.  相似文献   
10.
Various techniques have been adopted to impart a biological responsiveness to synthetic hydrogels for the delivery of therapeutic agents as well as the study and manipulation of biological processes and tissue development. Such techniques and materials include polyelectrolyte gels that swell and deswell with changes in pH, thermosensitive gels that contract at physiological temperatures, and peptide cross-linked hydrogels that degrade upon peptidolysis by cell-secreted enzymes. Herein we report a unique approach to photochemically deform and degrade disulfide cross-linked hydrogels, mitigating the challenges of light attenuation and low quantum yield, permitting the degradation of hydrogels up to 2 mm thick within 120 s at low light intensities (10 mW/cm(2) at 365 nm). Hydrogels were formed by the oxidation of thiol-functionalized 4-armed poly(ethylene glycol) macromolecules. These disulfide cross-linked hydrogels were then swollen in a lithium acylphosphinate photoinitiator solution. Upon exposure to light, photogenerated radicals initiate multiple fragmentation and disulfide exchange reactions, permitting and promoting photodeformation, photowelding, and photodegradation. This novel, but simple, approach to generate photoadaptable hydrogels portends the study of cellular response to mechanically and topographically dynamic substrates as well as novel encapsulations by the welding of solid substrates. The principles and techniques described herein hold implications for more than hydrogel materials but also for photoadaptable polymers more generally.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号